Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.27.0.dev20221107182342-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20221107182342-cp310-cp310-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20221107182342-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20221107182342-cp39-cp39-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20221107182342-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20221107182342-cp38-cp38-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20221107182342-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.27.0.dev20221107182342-cp37-cp37m-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221107182342-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221107182342-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8c4a36c6454bc0b5c24f9bc01193ace61e986797434587b8e19750d485650834
MD5 d1dc46981a66adef4b8c1b0bc484c7e9
BLAKE2b-256 dc8bd33f8c43a4edeb2595fd3ed555a3bf9390218f5ee7f0f2dbbac2c084c420

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221107182342-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221107182342-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a929ab757e619384663ca8901a305715802d654017b4c61ae8822bc22af0cf5e
MD5 d2e6fccdefe5db0746c245a48528926f
BLAKE2b-256 31354b48d10b3b781310e99a6d0d26592b2ee5a927cef8fa0f109c08e68b0ec6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221107182342-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221107182342-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4f09f8ce48c27ca70bcd32fdc04c4957bacbe1556a6fc1754345049f9f3e96af
MD5 c2f5fecf8417f39a6e8a467e58d3339b
BLAKE2b-256 3732b7b002fb4b18860c515cf7a608ff88976fdb4c5a5e1d5e4d6416c4d4f759

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221107182342-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221107182342-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b1e3e79ca4fbb43cfc1475cc43c0bd840653d964fdd6ba2314124cf01dc4d072
MD5 743470ea1a68881d49846051d1e1087f
BLAKE2b-256 237d3508d838e64196ee5ee9623658a1880561c93f033cd435fbb538e7a8e36f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221107182342-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221107182342-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c17a948b861f5a04287779ed5e39c67b015776b3f86923dcfe9ce45dcb99dc05
MD5 51ff4fd2c71c14d8c60c838763eecb6e
BLAKE2b-256 6ae53d92dc532a39db2ae4d988aa74dd4a024277592d705bbbba85ed296449cd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221107182342-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221107182342-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 89cae3c4abe4d5219de4543132f188c4e1144df553ab6ae318786476b1a5a98a
MD5 58b5661eca47425358ef3bd543334866
BLAKE2b-256 d70f41a5f77a07f89c1a4c6134e33552b8978a47e32cbc8a63907493b2684955

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221107182342-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221107182342-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 12692972a4a1736ccf2d12b0979f0ec6cd3c250181236b1740faf4c85140eb01
MD5 78499e9535a5e5f4111fdc9bf3cab8b3
BLAKE2b-256 9d6180f80469cadf7365e2f80db7d288ac232b64e40d83fc6bd7e3d9c59cc7e9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221107182342-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221107182342-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ad8f2ad82e49cd65c47e25ef37f4d8cb82204ef1f2bd441190a896ccd9ec94c6
MD5 bebafcce018ef998c76bb63fe2206b70
BLAKE2b-256 234b0ec1955385ec1cb7fad09395a870aca4d67149d37295e44d97b0e16eab9a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221107182342-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221107182342-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 603ee3a9c7baedd9222b579cf958a3fbb4457dbe680dfa9afec87a7a055cf13c
MD5 4a36fab553eed5e7e845afa67d513990
BLAKE2b-256 8893fc211705c1f6e36e457c942842a450a05c25c751bc0c3c82ad9b31425c90

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221107182342-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221107182342-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 82d9d54ed795c44b1cd304c8b8db5de1fa8b42537e15f483ac31f8bb12560f0e
MD5 e5cc06b098a972d8fd672432236a2d21
BLAKE2b-256 5ff0194e5a8cb9fe35296ff9b9188f3cfd37fba72d036cb2b103c713abf8ac6c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221107182342-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221107182342-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a1e6f165c0fc58a2e576344ea385642a0499b11ba205cd8a20602c1b3ab4ff25
MD5 a8a96332e4fb9266a9a937230125fbe2
BLAKE2b-256 85811c30c7a775a896a0a9d7f59496d1d87d51cb8ddd0cdfebd7b8328883699c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221107182342-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221107182342-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 aa784c1f3db97f50758e6caba78a3986e5c2ab106d36853182abac1b70391c88
MD5 8747315e27f3865e94179588f850f870
BLAKE2b-256 56ceb6926599c30e9862c8988e8b01e8776384b05a179b98869e2cac80ab5c8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page