Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.27.0.dev20221120143555-cp311-cp311-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20221120143555-cp311-cp311-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20221120143555-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20221120143555-cp310-cp310-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20221120143555-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20221120143555-cp39-cp39-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20221120143555-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20221120143555-cp38-cp38-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20221120143555-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.27.0.dev20221120143555-cp37-cp37m-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d2a8a05b6b2b9259251b509f90fe71aaded2f811b8638f44213cccd43f8934d4
MD5 8f50fe0a7c6e59ec8d30de5c71f92eb8
BLAKE2b-256 44ad0815395656b1653d0ab6b7639a597b3f6f09f8401bb92b1b7c6816da471d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8705e612a70bfb3c31275aaf7f29656302c263d0eec060efbab27767da4e73dc
MD5 543b3a07d66b9e474a84371463cd6724
BLAKE2b-256 d21f0802ea2f3cf1ea309095d4cdcb9f05c10aaa0098044d8edbb45cb9afb702

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0c46523a173575dd3ba5df38e736abf5cf6de3c25db2e1ffd04b6e5cee874aa0
MD5 d58b349bca1265b002e7058ac709ba7b
BLAKE2b-256 eab37243da3386dc59a718a02881ed4333f1fb5db0f2cadd3ba705598caf5540

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dce858d18be4f5fea7bb6c774e01c31945506b6f5bca90e1f7aa432df7eaa171
MD5 1a308b2e89c4948224c6cefe2ecfd21a
BLAKE2b-256 67963a2f287f086836e2e4145a8756bec9aac42863440bde0b471fd2f1aad5ce

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3107bd2f89a2abc6e3637fc4250a0f2f983d2eac0116557a9e4ea0267564a82d
MD5 f5777fa88e360a8ad4f3239cfe211da9
BLAKE2b-256 6bbc41e84a83d610e418b580cf06c8184b523af2095204ab8418b91a459d9f04

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 389d3464ee338136e99cd17c339651a796a6aab6927f1a107e7634f3ccbfc5da
MD5 cebfdfa4b416e9b1ba0bcb58382c8945
BLAKE2b-256 509947672cef701862af2ebac9301f2a990b697c275b7ed4f880a34329f4687e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 28c9b0f5e7f93e01521fcef3d813887d27f041c9cf44853ae431550c69e02ff8
MD5 e10f5c3225cf70c00d0ef1623f84a896
BLAKE2b-256 8b4063ce29ddbf97cdaf5caa60f74c5a46906a528de58a0da2d77c242599ca57

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 edda44f31d2e8052f8f2c69641d4c7ecb02416d7d3eaeafb8888ee17664142e7
MD5 14306c7d19dc885a3b7f00f0df9d4e51
BLAKE2b-256 93342b027c3b46674a018fc38bb4acd9a13d4aca44363d29d3be0a54096e17a2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5dabb20a1e02b486f3f65f1c34dc14ad5695d88e934a3abafa3af3c109c38c2f
MD5 98f1153412a787f97db964d18d8e3489
BLAKE2b-256 734efa72a2b355962bf9cb1ce18eec88f110f1c8905e4a457b5133fe79ee41fc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b4061ff6b329bace8b528370b8b484858578c29a797efb4504a47db99ebcf7cc
MD5 4080e4dd8fab6f37dce232111b3a777f
BLAKE2b-256 8b7679b6c1d9ac373063ea87f00c3410a9c5025b23a5299b38711a3f3b1d631f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9af964be1d9b119686f9cf1b9b1104b5c8e952c3e2d83382e9c33e8fdd8a8bcd
MD5 d33ae8735dd308380219a0bbdc30f567
BLAKE2b-256 93dce99b3d6c6771bd374d83c7365e1abac6948a6d7c8ac7debd64d4da09a877

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 612014070c1227fdd50949a4e5eb25f195468104d5872cc908fc8239d5b4206a
MD5 afb53409f088d0c0e356c6265c0045a9
BLAKE2b-256 8ac59e3cc47a1a3561efa7efd776aa8b5630fe6957ee2b76de500e26b17de87b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9df0ae719d44eed68c4972031bafa60f2a6e83993f4ed59102b230a22f2b0640
MD5 32714f3505e27328b89c791a48c5f552
BLAKE2b-256 a5569d33acb031c05b4338de0ffcea4f1acbf5c1b3549e5fd31ade0d21e98df2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 547030fb392ea051db3fb4fc71456ec7f357e5663583d292d1a8a329cf4d8915
MD5 05a018632504ee43a2328a2a29447489
BLAKE2b-256 06ca23ebca4140d36455cb83a750bdc1ca9eb0e975496cb459881cc87c2f07a2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20221120143555-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20221120143555-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c8dfe7dc4a732b59a59d0194b1d271f03769acc814738fbc73c50d3e51660002
MD5 be87b70c5e4c71b621d52a71a3b5b473
BLAKE2b-256 c029321c4d59c2f5ac260161c16bece38308e49e16f023776ad97ae960a94c17

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page