Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.29.0.dev20221218011724-cp311-cp311-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorflow_io_nightly-0.29.0.dev20221218011724-cp311-cp311-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io_nightly-0.29.0.dev20221218011724-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.29.0.dev20221218011724-cp310-cp310-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.29.0.dev20221218011724-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.29.0.dev20221218011724-cp39-cp39-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.29.0.dev20221218011724-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.29.0.dev20221218011724-cp38-cp38-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.29.0.dev20221218011724-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.29.0.dev20221218011724-cp37-cp37m-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 aec233f83563e3d1350caacfecb6bdccf776f4dda9ea983447d63d79857c3a39
MD5 45434b7025032e6c2e13eab9887c5a24
BLAKE2b-256 acf559dbd1259b2fba0d89f1b4b77f2992b6f1315e666bd14bbd2042908b1272

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 002ff590e6c96b85407ca687ba19a960b972398316ced35ccc5c4523dc95d101
MD5 27101df8f4b2b7e54ae4cf214e6b024d
BLAKE2b-256 09e31da9138fdd8bf7c9ef9db392b6df605fdccc69ad971ad4b09571aac756ed

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d4f6b3c86bb64436e9cea0d6d8de511144a5e50e4436830a5eddb710ef4afba8
MD5 4db7fd4858a97c3bd312c6df507c89fe
BLAKE2b-256 9dd34807a8a690a9eca5536a59a37a856fa9b49e209dd86ffef2ee69c65e41d5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 518bb3bcc744e5b2d9791a89651113b1645ca3773946e6c993140a28bf1243e7
MD5 e0ebf8180247b44ea4d6abd8aeeed6fd
BLAKE2b-256 f9e59d12389304dc0651c76e75c35cba5e1c8aeb1f0720baba179997c3da4275

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3cbfab30ad55c928b7befefb03760e132a5675bbb8a30503dd5699eb9fd8f757
MD5 8cd10bad1345551f3e79de50156a551d
BLAKE2b-256 bcde65262defa90197954ad3ccdc7aaefde469ca2d53842cc6186e30e539adb4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7732a668e38ecb5fb1bc2f9974b4cd2ed6c90c3d736bf4153d62c6e5b4d2cf7c
MD5 ffe3c31e6ef7b8654088533efefbd67c
BLAKE2b-256 a79746dd4d5c1de2fb5fe6ef2524e2246f52d6250227752629df94b09b8551bc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4f40c307918f67e25dcca2efb7527212c6076f506282da1caba9e0669297cb4b
MD5 f780286062916481e9181606cd61d4c4
BLAKE2b-256 10eeb8f78ddc9f7665874b1de14ad0274a59a29e42fefdbc4bca5c7a7a1631c4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 87c8d7d2aae64cdfc3760a8f8a50ec21f9bc8e871ea8c1bc8e62b26623307ef2
MD5 bf92ed5fa9881e497744a3b19a1f9564
BLAKE2b-256 e684e23876fc77ca9b60608a4886acd197d3941502d247e34ddf8f0e58285dc9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bc1ebfaac4492ed200cc0e463a8a4c4e3d46e942045954e1888ae18dc85b9f76
MD5 a2f221ffb36f487715c25c51d19f215b
BLAKE2b-256 7f4944dc6bc5866e5e1405ec901aa42fe3814730134861194c14f5813ad3226d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 224af8ff249ecf7c262c364ab9651217083633417a5edf7b660482f2975d2e9c
MD5 a55c38740a42bd83eda08b2c461e5948
BLAKE2b-256 26690a82778c8f9d0aff3925c9542afc9d90089c3ca72ad5490835d355f8e2c3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e712cc6b68a8f30c2aed1167362c093d52d64cb2e25c8688c51d4a4a6f0b3869
MD5 a00a68a924cb4d7a8d154c274bfcbb32
BLAKE2b-256 ccf54cfcf06b925b3848294207e73863dacebc0bfbe3de74ed6fa5483ce23a57

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 87886626390611ab349e9d08828a851946b12fbb226f79849268dff2f6973bc2
MD5 21dda180506289f8e772254e42ee5f37
BLAKE2b-256 223c2fb2ce53d88eaae9fff096bd3ad1ecaa1628bbd8d53940b795d6d7fbc820

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 98a71449a813938cdf2fe309b17bd47e67b2435e98b5a19628aed236d26d1fe4
MD5 14773af9932a3b3e42b0e28896a3c757
BLAKE2b-256 a8e0e60e0b92bd03e0b452c196a5c1adab72ddb8c04550b7db9e1eccc25caec4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5849c67cbf4b54f10da1d8512cb65b1ebef0d400f05ac28011ddc614f07cfb6f
MD5 e0fac2a3d2d7a6fe9f7526e563ce3b7c
BLAKE2b-256 7d4ea2469239796c9bad25140d1bb27fc95d7be34dc13b2d59ab90e52b2b223e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.29.0.dev20221218011724-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.29.0.dev20221218011724-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ff8fc54c00a2b91d22bb6477702022c07833d65c2d68fae875ca9d765aa4cf42
MD5 c0738c29e381529cd86136da4818acb3
BLAKE2b-256 518dc8f571a242732103ef51830485dc6970b11b0e67f8ee03949abc245ae961

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page