Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.30.0 2.11.x Jan 20, 2022
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.30.0.dev20230207000017-cp311-cp311-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorflow_io_nightly-0.30.0.dev20230207000017-cp311-cp311-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io_nightly-0.30.0.dev20230207000017-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.30.0.dev20230207000017-cp310-cp310-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.30.0.dev20230207000017-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.30.0.dev20230207000017-cp39-cp39-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.30.0.dev20230207000017-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.30.0.dev20230207000017-cp38-cp38-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.30.0.dev20230207000017-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.30.0.dev20230207000017-cp37-cp37m-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 36704d35c7cb9e83e7212da21750696e849d705a813d3145d2055d875f282cee
MD5 2122f730a21b631275cac63d35b158f8
BLAKE2b-256 4f791f39a536b9bc25cbad8ca7cc74f69fd6b63eca16df858f1256d93e49ce78

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8967b3b34f50df64a716682aa04678c666ad5e2298840d9d12c25f9bba3d6c89
MD5 d257cefc0cdc343b596094611e59b0fe
BLAKE2b-256 894d0582c23bd13769c1f736522a70fdd91897338371a1ae41b4176326c321d5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c3a846bb6d0e03646b321fe0cad94fe52f9c39fcf421a4576d16dab1f1c77726
MD5 b5ff67ff47707ed2d7929a27d55f873f
BLAKE2b-256 f8a10a29bd21da49ca0c82b99d8deb1ffe0187489362e4a08bba432357dd5f25

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b51fc319c697d09973acad2c2b0080109c27ea4c714464e85e583e56565af572
MD5 6de996fb2455540e192412819a2829a7
BLAKE2b-256 60efcfe6de8f48c262db04bab2bcd863de79552be2faeef801bc740ed2de77eb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4c25b4e0e4bb2bb1953e1ac3bf7c415efc782dfa6940d0b307b8ac703ca8b724
MD5 6db136042f11ac5f4b44af4c69d181ed
BLAKE2b-256 e0269bdc5c2b7ce0997c6bca3bfc72df3b0638e5dacaf18b477fcf1bdc77b217

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a91de66665ffa0d004ae8cd3ad63a7b4a2678240a046e5643e9405394c0c3835
MD5 d25b4a9bc6975d10d6162ca2b2c29670
BLAKE2b-256 66fa16547d8acd6b50095167087923452a7b87b09c1bcaf6703606786c8c72f0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a386ad83293fc9796e32de13b9864d7dd24e7d5c3b10465bd5610c5d3c391a1b
MD5 be5822596552312eae557950b1e98740
BLAKE2b-256 4b4bc34d3c32b48440ed3d34ab76c9b40570ff98ca5d132055dc3f1712327d5e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 236f28bacfaa045e35ebe3a50a6d185eab3368bb1e8b54857c85040b3d285a8d
MD5 06519d1b3547102d7d91b176aef74fe2
BLAKE2b-256 ccd27db18983c13dca6e904e8898704271ed0990c5e7fcb0eb00206fa7fe5957

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 51e04a5947176ad2befa7eabd4c0a2f1d6d5a790fba71e204d07ed870f1095bb
MD5 d1e8ad95f5aec61dc5b9a0c0af6d27bf
BLAKE2b-256 913bdd814c199ebbb3a6b5ffd51e5f517b2d9977430d689edcfab3c7cc0f5975

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cc980e70f5e66da68ad2f201fa5678733b95838a46d6aba8830099971d613db4
MD5 cd1519896b1ad97554089bb7321d7df4
BLAKE2b-256 044094a5736724a20b8dfa62211b0d1750f876055f06ddd2b7de1aeec26fa266

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1d79cbaaae5fec502774cd999747cd44fe46712c8721598505d9952583436cd0
MD5 8ead101ee10bd46505680e47fd0ce8ca
BLAKE2b-256 73ffc8963ee7620fb71998e1d2a8fc8041c9359cf7b73ed8ecb48d4a6bc9c404

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4f2fe94484b826aec6220c4a4685b0ea08d5ab601120da47b780dbc32192847e
MD5 d0e9ef0fc6aa9799c15124b98944ab7a
BLAKE2b-256 4d19271567c630416df6ce0bd94300a06230ccba07bedae66c08a2e776c71e5a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 58097a7371ed1643ac8deb972e476d0d6ffe912bcdf37a588b5a547dcf045e50
MD5 5e7fdd5e343fb0b0fc0048c7dfa75d49
BLAKE2b-256 764c66d9e6bc987efce4042f78183b8b2a479e4f7c7d4b3b40a66995ae43ef43

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 afc8c19889b2cdacedde83beb9ab57f952998ed4217210e37900d413690ccf2b
MD5 e92a504a51eef895de11eb7058b13105
BLAKE2b-256 7c41ccc63b77530f5d67a7be6396b8e8ba6eaec936c363914bf91732c71f3f50

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.30.0.dev20230207000017-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.30.0.dev20230207000017-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5830d20ad609fd9eb4ae3003f31edc8ab8772452ea5bb0f0bc87e3255a9aba26
MD5 f4698f2ad49f7860be54c778a0f1e0d6
BLAKE2b-256 3247474426f448cfaa6cda3734a813f93dee72881fecb2ed536afdd018c4d342

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page