Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.31.0 2.11.x Feb 25, 2022
0.30.0 2.11.x Jan 20, 2022
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.31.0.dev20230222054122-cp311-cp311-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorflow_io_nightly-0.31.0.dev20230222054122-cp311-cp311-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io_nightly-0.31.0.dev20230222054122-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.31.0.dev20230222054122-cp310-cp310-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.31.0.dev20230222054122-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.31.0.dev20230222054122-cp39-cp39-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.31.0.dev20230222054122-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.31.0.dev20230222054122-cp38-cp38-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.31.0.dev20230222054122-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.31.0.dev20230222054122-cp37-cp37m-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fa16ab46e7424d9d2ab04576503c70a67dbeb8b1a4ce28e1298e5768b2771cd4
MD5 b64cd01bc0463169e5f4bb88a02df59b
BLAKE2b-256 90cc733d4593d4d803cb071a2aea02ef25fa37d77f0f1fd8472647c6ab0c790b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5c47df1282cb9d1856817f70ee958eac846934148d66309453e84b04016fb302
MD5 971d86b679f9df55092b81719b30a6f6
BLAKE2b-256 eff70517ec9232d9a51aa473cada86c81abeab02c6279e5387ed5dfd99bd2909

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6e64181f17cf4d0cde356166ae2d76568a50a6fe422444ed017c27592acfe3df
MD5 eb217e22d6578287f02aef78191b52fe
BLAKE2b-256 ed102fd06ff1181f3f3cb3c2497aef997673fc666ef93676773bf86c388b3470

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6fb1cb93189ec805c074e6c5f8e181e5307a7f5fedb821e6daf0051e37a0f1c8
MD5 b87a249778de842391ce3fac09131e70
BLAKE2b-256 984c75fd6c90811728523e4bbb4dfd6d80781dc3bf28e165d6c4c257817067f3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 22722d951f8d405aa32e5c501acf67ff31b5abaf2b21d70aa69719d64e7e4842
MD5 2b33b9eeda10d4e854b1e13d295719a6
BLAKE2b-256 77cca3c515990cf021bd9aae68b03fc784453b50cc5d4f509df4bb56762182af

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4d35d265bc9e4a59c2b1e5dcfc2fcfabfd9334c7d70f1f7c5aa2b42d8e0130d4
MD5 fa45b99fa17afe2c32e6193c70dc399c
BLAKE2b-256 e853f741908f87c1be7192d5b09bc9a16d1f0c601daf27aaeb5b30e7dbd8a32e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cae7d4b8662360fd8b57733ed2a9a13dbcd2e14e4eecfc2928226acd38d682e4
MD5 ba388727126e919fb0ce3b9ce4d9d742
BLAKE2b-256 d6e06d017492e87cac5f191acc97cfe545f8afbcd424eab65489235df26dd298

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ef74f21b218042fa002aefd45ea65cfd1277542f2748ed62c5966912b2aac66c
MD5 d037161fe70afde4be7907b080de415b
BLAKE2b-256 3c831caacd0f787a49824a9c8ef251111bfe8cb6b7f3d8222b27ac35042b4c1c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 13986e4801cad0cd3787a2e54e8ba52e6c499bd1cdd0cdb60c047889a561607b
MD5 73376e55625030d726405bc41a7d143e
BLAKE2b-256 259c76f18758b275c07719efda8f8ccc1c61ad6f042f93e38bb280dd123d83d4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 22475cb0b0fef6c3f17cbe61d53054f7d6519ec7e8d90c5de1859a6ce91d7248
MD5 735706217a0246e0eb40eb7f99c13fb5
BLAKE2b-256 b61588e2d42c283e832413b86eb85fdaf414ac1f649c3bed5432a7d1b2524fda

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 82b48a29c3c09655cb678e9c51698dc90f8ccf652259c097c08826a15e9ca2f3
MD5 8cef65dec845b76fdb37970ff1d3cc6b
BLAKE2b-256 68aebda0c768d290d1a8b1a7bfa651bd228e821020a898c1aed201971a175e6f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dae9238794ef7f685d7d9ff13cfe461133e3e5cace5aba50db51aeb869c2c7bd
MD5 1c9f4ace11562177fbffa06ecd8d1c79
BLAKE2b-256 b7b14c7fbcc311963ecc4c69e3970f3d31e6b2872c70c36156e38d35d6586240

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 170eb4235bdcf5068d5a788f9c5d9124b4badf7b3cb583eddd2a837892f1d7a9
MD5 4ce6705053af2d3823dc6e26c62dd0ed
BLAKE2b-256 5f50788a56ef9954c525a1c92c7713ac02fde580be79ece4459dac296ec9f64e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1cf3778531b1ecd312517242b480bde642462dd888eecd21e541c1075d51af97
MD5 8c9cc12f57408ee9aa252ea54043dc38
BLAKE2b-256 9467955722d201f8d00ad50f35a4bd30883a219954e9fc32a0d35f602ffe0d32

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.31.0.dev20230222054122-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.31.0.dev20230222054122-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8bd3d5fd36379775dedae627ccdfccbb0216b586d18fd72136d4ef76e0a99c12
MD5 d8dc50e50d09a5b5da512ab31d2480f4
BLAKE2b-256 72e05de177a0dc2a861081fc628f30da8205a403fd5e03e87bca26422edf4487

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page