Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.18.0-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io-0.18.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.18.0-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io-0.18.0-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io-0.18.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.18.0-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io-0.18.0-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io-0.18.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.18.0-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io-0.18.0-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io-0.18.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.18.0-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.18.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.18.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for tensorflow_io-0.18.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 77e26aa160ae42c1b149f9bcb543034d43bc119f0ce65936c54ed09ac9a4aa87
MD5 e0d19590150cf025af22c365080195c3
BLAKE2b-256 9bec8374c5cefa5fdd85ccf0b966bdb6f232f8d99ff4dd5c688a175a1131ce22

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.18.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.18.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6e353da5e3837630e7f49abf05d1ca888fe93fe84eb78fef6dc7abbb3b949522
MD5 bfdefd0e40038ea397cd19f15b18793c
BLAKE2b-256 c774fa64850eb20c7f0f696efc355a61c643982357f58189b963f01a3a9cb364

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.18.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.18.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 21.1 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for tensorflow_io-0.18.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b8bb6fffd5d722d0d2ad815817d81f1c299ebbffb370fb95e2ab968d2ba1cfaf
MD5 9872e9adc7e9ab4a3680c071ee7406f7
BLAKE2b-256 95ced8847751d9f2a558d9a0d0cf727eddc30d2670f6b6286606473c3eeed987

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.18.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.18.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for tensorflow_io-0.18.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ae9614936f91302390712b0a63391e5af6a2f606e14f47ef5ec96698ea85b1df
MD5 fe3aeac2eaa5aad1337a6df153b6597c
BLAKE2b-256 478ccc732ca494d60c8e947ee173e533a71946c708ccd2585921ebcf5c08d0ef

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.18.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.18.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 52c574160a1fdbef16dce727e1ddc0a1bfadebf538a5dc9ae922291facdddcff
MD5 ded7229b2876ac8fdd679467e15744f5
BLAKE2b-256 f745c3b26b09b63964827038b714b2fe27e9c1ec891f8186cbf88baecd9b2dee

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.18.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.18.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 21.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for tensorflow_io-0.18.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d0c664246b1c50dfd7670018f5dcc1cf6c569c1d0873dd851707874cbface9fa
MD5 d2d383cbdb35e4478f5db78fe7b1554f
BLAKE2b-256 9dda98efba237dadc177c4c6c11b93b75f93b7a9566903394b3e10a53adfbab3

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.18.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.18.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for tensorflow_io-0.18.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 79d78543b62d04dbc78a9ccf936802e65ce2d30f07d5f4d4ea1dab638845f490
MD5 a4359eebf92a7cbad130687f50053acc
BLAKE2b-256 a70161e1ee9ce619f5949121fed4f5fd521990e73ce5a37c8a32f642fdb67780

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.18.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.18.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e78c7cca5736e6bb3e57875276c8a82f011060660191bf288eef2464c55a6e97
MD5 2cdab5419b67279f89ab83f01ef7fdfe
BLAKE2b-256 e6d26fd39a3519e325037462721092248b468ccbeeeb5dc870cea072655ee4b0

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.18.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.18.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 21.1 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for tensorflow_io-0.18.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 10f5256bd4a197759591d981c4d0ce6c4452f74603b42f772bbe80eb457cd333
MD5 811b42b5557f0c14a8b5344308501498
BLAKE2b-256 9df90214c8774b009c5a28fbd77cdb311a893763d26b3ada4fe965d52a49be56

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.18.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.18.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for tensorflow_io-0.18.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 636968153712b5b30b2f8755136a005d5023916f3145a58ce1f386e1383ab01e
MD5 e21e91efe9227bed64a311cc9765dc45
BLAKE2b-256 c3224cb4e8982416b18709926c0e7238ae4ce89903ef3a6b616df7ae01871d48

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.18.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.18.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 98b409458d63d7bcf020bc13544851fe95fcc05fc3bf6726cc021beba0f78a8c
MD5 485051e2a312ec3f35ac1eacdbced8f4
BLAKE2b-256 f2d5f7075b8adca98b32cbda96c52b6916c888edbd9cf0d8ecff45807e96dad9

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.18.0-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.18.0-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 21.1 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for tensorflow_io-0.18.0-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 24af67221e8e5e7638f1e353489b0abfda2a68eb4a10eede8e58ebcfbb700c94
MD5 a36d6cfa673f0763027b48a3e0698cf4
BLAKE2b-256 5603a5f2bc011a7541c1b537e756ba938116356b576b2c441467b17d266fdc11

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page