Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.19.0-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io-0.19.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.19.0-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io-0.19.0-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io-0.19.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.19.0-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io-0.19.0-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io-0.19.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.19.0-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io-0.19.0-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io-0.19.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.19.0-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.19.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.19.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 21.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.5

File hashes

Hashes for tensorflow_io-0.19.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f284a5b45b2e1fcf5f80d15bf74d37a34ecc8098c546818a27219bd134cae961
MD5 90111fa6ea7b7dda1a70d404b277cca5
BLAKE2b-256 919f6c44450ae9b8cfe9e64c37fa520e7cac6de3e0401064f28a8cc6f16e924a

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.19.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.19.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8645f70b7d4b4fdb6e0d851d35f66fc9cee5f04f9d6822f2373181741294efd8
MD5 fbeb91e4b1f29411c1cf080bfb375d9d
BLAKE2b-256 83d69989944ee9b538bc7def1ad21a44bd132d9154c92814976b27dd4a480a33

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.19.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.19.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.8 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.5

File hashes

Hashes for tensorflow_io-0.19.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 84bf6dc6ead54aa048051e400952f16324eab96db2fbfac40956d27f305dff5c
MD5 b9fa39d0401a1b619f560ebe5ae68661
BLAKE2b-256 4188a6b0c551d44867e96e8b282cad5a84b33fc65b333562397b6fdd549ec561

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.19.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.19.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 21.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.5

File hashes

Hashes for tensorflow_io-0.19.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dd603600ae1996930d4457a39414fbbfeccb3037975b01af39fa87deb030b118
MD5 cb31da0a4b74caeddd819dda017a6866
BLAKE2b-256 e2d47ac42cad7d8fec4e1227f612bafafd31d754b75fb4c797ecc338cf71bd8b

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.19.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.19.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6ced86ffc16074ee22c20cab169c5611660b73a56553561fcc4cf482fa885ddc
MD5 00a3ac65fdff3d7c1b6fbab8d5a920e0
BLAKE2b-256 91fce561ee7d92ce57a7e7d335d0faf158f7ab7e522e9123d3f6078385cabf07

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.19.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.19.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.8 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.5

File hashes

Hashes for tensorflow_io-0.19.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 666167c07c5134b45657f5b5f57867f3db3dd515dd4276db66febca2364af841
MD5 e9eb1ab8afb9f92ae25bfd058fb0992e
BLAKE2b-256 5ac81c14791c3ad964a488d0c1e286e980b49978c89b73a23e73db47a8031ad1

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.19.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.19.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 21.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.5

File hashes

Hashes for tensorflow_io-0.19.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d23ee7f0dc3ecb6435c89610af8e3b70e36f3f94e28f0835638f0ee8bac44efb
MD5 ed9a6f9d4962f35a431294d788da0e6d
BLAKE2b-256 0da9069414d67e95d246607a8a93f464d776f55f3ea158684cd94c2ffdebfda4

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.19.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.19.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1ae7ec15e8cdbd03087dc0fbc31b62a5cee3348adde380ceec1216456168e910
MD5 fb83b6c425f9bdda8995b2ed2d4a0848
BLAKE2b-256 d2b7b76c28a422ebaf1c3d97aa6553e8620cc3b0d91976415b4ca255176c7946

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.19.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.19.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.8 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.5

File hashes

Hashes for tensorflow_io-0.19.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e936247a81ce3ff20bf56b25b818f9f406fd93e9ca98fa2acaada6882a61f7f8
MD5 dc8e696e7f75215682072f2a9ee4a9f5
BLAKE2b-256 4c1d71840bd9acb5477c152e13ec77576c471269594a7bb5807f7628da10758a

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.19.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.19.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 21.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.5

File hashes

Hashes for tensorflow_io-0.19.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2b35565bdaf4c10a913383d899b267cb4d24c3f88f6dcf0c8ce9a0bf804334f5
MD5 5277f4b88c2ea5ded157dcceb535e466
BLAKE2b-256 a73549ca03f5f15d889e0474baba4e9e79ebd0ad1297c6beb54036a6185badaa

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.19.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.19.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 37ebf6ea388f0fb209d9fde11cdf0513c183ff4e6222b7d069d3bc58471d10f7
MD5 c7077776141c0dcdfe1d6f4110bd71c8
BLAKE2b-256 a19d4010392014200128de212c3b2f425986bf594506074be503d4237a1b1a34

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.19.0-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.19.0-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.8 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.5

File hashes

Hashes for tensorflow_io-0.19.0-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a9a111e42cef1976087cbdf7bf3273dbf73875c8064d97bc144fc12317ce2e0a
MD5 a9d054b2fa7dee9d8eff032e8d759dd7
BLAKE2b-256 ac8637d3fc620821548932aa5f280d8d596186239be151e4f177a5a2e2030138

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page