Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.21.0-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io-0.21.0-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io-0.21.0-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io-0.21.0-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.21.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.21.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 21.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.21.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d583464f26636821e04c4033a1fe22eb778d1a92e96294621fcf1424dc41b51e
MD5 8aa5d8f03fc854aa3e0f0bb486b64a43
BLAKE2b-256 5988ca275630275db8f82fec336629a1572923210c10df0dcd0a5751078c08aa

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 627fac868356fd70fe62aa7c56ce7c73e3632003d205957f536c57287ce92bb0
MD5 4bd75d1ca25e31e0271d358000a3daae
BLAKE2b-256 e8d1f14aab9c960df074af45008efabd99c3caa1553d2f365e913169b311ff06

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.8 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 91ada1f2792e7b79d493a5cf4de6a526521c20ed4427964d27522ce738b71fad
MD5 f633fa2e4daf3c3b309ef2a8c5e6e7ae
BLAKE2b-256 0a7ffe7ed970521d564f070010ea1860c47ac12edfbbb1682856fde642a0984b

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.21.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.21.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 21.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.21.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 57aef0dc3ad15f654727af7668dc5506ba4439320e61b0cc86740a52cccad809
MD5 5edb87a189bbdb0a3e1d4a20ef48d6fe
BLAKE2b-256 44a55c46dc4abf931441982e7f7e0dc45da15936045afbab1c9e0c8d730bbb2f

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d66945ed3a60439b9b8425306b4eb38419dded32a8fe1211b87dbe664c4a3d1f
MD5 ae612aff4ea8e648d0c3fb28a357da55
BLAKE2b-256 08f329dfb6c0b83ed773878559e2b17ae823dbaabcecce08c25b8301cbf355f5

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.8 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 97cc0148f31bc0842cfc8c28b9a356c750d1c6e1796da9781a7a71f01c8785f1
MD5 e6d5e4567376801a300d79b9a38ae7be
BLAKE2b-256 611415bf186b36bb71828a83b9256489ff61598d3ba0d89ebbede1bbd47fc1d9

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.21.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.21.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 21.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.21.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c9c5887dd354727ee435cd2b83dad0aa9d2ff9686a218f4902f479104fe22064
MD5 1a2738bde15bb25a6d8bfacd6982ae5a
BLAKE2b-256 1e4ad96062492694fbca52e531c6915900f77562aa203a6d9497bd608722496a

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 de8059e22adbe8c80772093b4258bde3023ed3677a4acd55d5240e9a34cda0cd
MD5 f9d9e2d3b37158aafac6befd385b4a5a
BLAKE2b-256 2ca8f421b781d7369926a31ae870d0634c02cc1895ef5de4a9da502a1216b782

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.8 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7fafb9de66925b75e4f5ce559fc373ed6465a6728d461f7b5c6bcc53f49faf54
MD5 121b5811faa411f162f997060725aa0f
BLAKE2b-256 c679e82eabd4120e39752afccca559e8c1e6ca3505f2fc2fdef12cad429b4add

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.21.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.21.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 21.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.21.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 75fd84b2c927bf34f31dec5239fc49db5907c30c172ba8be878e9f349929b559
MD5 d34ee3ffcbde88998a0d8755d1b9f35d
BLAKE2b-256 35228e64c8449fa4ed842f1e81fffa8e0864e30e77410540b13c886e4cead256

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b1aaf37eba01d7c0d8871e2a508a81c5c8e430f4e44eba5a0507d9405df25436
MD5 f045635ad246cfca3ad3539ed1a9762f
BLAKE2b-256 5155746b1d45d6b8a132c7632a5cb0e36cd6880ebcd83c6605b5c34cc905df11

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.8 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 792802ce5649e0f83339fb894836d1ac6dc26f6d6987f01c69c37d5b8393a1b9
MD5 bfa9a87f7d107dab6b6fd94f4f0e58dd
BLAKE2b-256 8e7378faac127efc9441b00b8ae996311057daca84f2a6d7d61fd4907cbb2e8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page