Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.23.0-cp310-cp310-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io-0.23.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (23.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.23.0-cp310-cp310-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io-0.23.0-cp39-cp39-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io-0.23.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (23.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.23.0-cp39-cp39-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io-0.23.0-cp38-cp38-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io-0.23.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (23.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.23.0-cp38-cp38-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io-0.23.0-cp37-cp37m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io-0.23.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (23.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.23.0-cp37-cp37m-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.23.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.23.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 21.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.23.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ac6eed06d3816134fc6951a35217783189874eef9407ace65be16c47b40d92f3
MD5 892ab96108f86c9f82cec2267264034a
BLAKE2b-256 6950e9341aa81223fd776a1f0a9fc76136116be5818d5507d25aef34d33fcedd

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.23.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.23.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c9806ec23d7ff23b717d89e8f1f7374e63f55dd37fe649698bd319af68942b7b
MD5 47a3358ef8ac449ba8632d8b5d1d1308
BLAKE2b-256 174f51278e517427973d3cbaf141725c1af90aaa627e832121f8a70ad4ffe622

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.23.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.23.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 23.8 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.23.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9a31d0f28694c1f3490afd9cad14a06acd526be3086ebd25e9f22eae8b09dcc0
MD5 a179d57b1c48ad7c21074efb1c677fee
BLAKE2b-256 434071249568f4f21a16a257b3022411776208bf3da934f22ae186c39aa27057

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.23.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.23.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 21.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.23.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b65c4e9462adcffff5587db449cf9d3eaf9179e4e891b6cf0506019b98e01143
MD5 a8198d13807c8431fbe0bd2c8f5e5406
BLAKE2b-256 02ebddc819f7826c555ab3201e6854726f5261cafe2420996728b25161a614b8

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.23.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.23.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 72936bb4ff7ce1813c93eda7d6879f2a5fd4172767100d0b4d889d29cf4bc6a8
MD5 427029003541cf7a513303a0ef9472f3
BLAKE2b-256 276af6495aad078b6bad654d6c27c48c9fb1eee15a302313d0f6a12ae2252e45

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.23.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.23.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 23.8 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.23.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c10a38bdda2fd1178975e3a6b1b462e382ae9346ac4e23601a2bd43210c76d14
MD5 d8df61725773167acee809248db3ec14
BLAKE2b-256 66928b2d3194dd16fb99d6d313229f4a55da2d6476aecbe1b49ff579f3f187d9

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.23.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.23.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 21.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.23.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 76cb46e6abf47837ad40e7d3f7dfc15844021f42fe0ca679224354595dc6530c
MD5 6afb7f7d8c8f8afa0be4c322c22b29c7
BLAKE2b-256 6ef8d0dcc8cbc4ec2fbe9b00cad90290dfbe8110c1773af2034381698957e188

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.23.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.23.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b5538d21e46a49377d0a53dd9b35640832210d2b1ee9b3db74e046942230215d
MD5 1a2f707cc46a54ba9e8843d0a6a2e4fb
BLAKE2b-256 43c766484eba7481c342673e3848a4178823abad6a5f6a16cf47e9959b8e8fcb

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.23.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.23.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 23.8 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.23.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4357a6d83edd766a38e5a7cb14b71076fabfbc9d9ae37e1964bd734daa4ae863
MD5 54364eed53aee6b56e9e24ad3af3d98d
BLAKE2b-256 af02b40d08fc9f9d1ba21780ef0a452b12cf6ee4a8d6aa40f27062c43ef5838b

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.23.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.23.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 21.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.23.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c86cfe118bfe4536bbc5514c0b2328f16341d82251d533832ea944667cea9489
MD5 0a6f9d008888981264864de4e492efcf
BLAKE2b-256 bfac20bb6533bbb9a31f248d783cff25a314f75404f62395a9cdfb6affdfefc2

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.23.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.23.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0e2690d97aceda1e4126af83bbef0e87be80a2fbd065a8a94ce8bc85f80d3aef
MD5 48133b47f2d86bd75142778bd55cb352
BLAKE2b-256 afdda72f6b97f9898663c403d8ade039e8fa8d30579f3bff0a0251530320e29f

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.23.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.23.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 23.8 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.23.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9d2f9d5678c1c8cbc1abb160ed212dbf243cae64bdb072599948aea66d44cacc
MD5 7645ed92d0fbdb098069327b12195785
BLAKE2b-256 7d03a09dd4ae1e075572b3b8820ca3b03cb9bbfdff931103a193ebe27191ce1a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page