Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.24.0-cp310-cp310-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io-0.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.24.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (23.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.24.0-cp310-cp310-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io-0.24.0-cp39-cp39-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io-0.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.24.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (23.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.24.0-cp39-cp39-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io-0.24.0-cp38-cp38-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io-0.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.24.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (23.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.24.0-cp38-cp38-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io-0.24.0-cp37-cp37m-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io-0.24.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tensorflow_io-0.24.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (23.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.24.0-cp37-cp37m-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.24.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io-0.24.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 532ce560a16662c606c4c2866792c2cf02e6f7ecc7a45e678e0fb04f58293fb6
MD5 d8f574cf5ae97aad42a5a6bf55eb3681
BLAKE2b-256 22118234a811d517876208d82208d169f625c7026a880074bffae132846ca95e

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.4 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for tensorflow_io-0.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9e7ef574b47060efe79d9b7e56c626e9f9eb46abd26d7fed26354a58392f86f2
MD5 05464e69500df8bb4cd9876b8e1bc692
BLAKE2b-256 b581e2dfee1b9797adda2b3c637abd37791f94de53ec8acb603d9bd5f4688a3f

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 23.4 MB
  • Tags: CPython 3.10, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io-0.24.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 02a7ff1c1f0d0e3725e0c140e87e47b83e06d94093991a5951769d058a274bc6
MD5 7879617f02dbea531a996a59a889be55
BLAKE2b-256 5e948e45001d7a49c4b92fb8e48a729e7757e4ce29bf4b5514fb83b8023f3ae4

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io-0.24.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d1d9a6401f674003b13564d716137bd150e2867e2e4156e3c60e22d391481649
MD5 e820df8586b0e50133df6d1fa32b2f7c
BLAKE2b-256 9202c8421af6af02bcf18b4c96c3b2caf18f6b73ad80b9d5afe491c320dbc306

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io-0.24.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 709355a59c35cf7eb26507dfc2c918648c69214647481da0db5257d47778a6e6
MD5 003974ca8aa948329c059e2be1d535bd
BLAKE2b-256 1457fedfea4f613bf6fe04acca3780d4a4daadbf32b362d715294c0df66b6f20

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c1cea969d035f74af9a83751772998c141e0400d2148e4c3467a47003a95bb8f
MD5 f48b9b9b208953dcb36d422f29111345
BLAKE2b-256 d09f4968e995448fcd2e87137b28094543848ba65280db33b771b2bbd1a675b4

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 23.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io-0.24.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b69651367d47b1215e8efdf53c271f7eb3cf54b9f12d5ef12b988a3aaa62940e
MD5 ef5195778e180e6db4f7191066e39468
BLAKE2b-256 7c118718cc2ced0c1fdeb63301bfc6ae3423d455143999fa29de0935bdf7a300

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io-0.24.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ac5a247c217b9a6619d7aaf74e2c9e911cffab35a1b74cf4164a14069ce56bf5
MD5 d05269f5ca78962106ab12376ca1372d
BLAKE2b-256 c20c6f9c00f53a0f69defb4eadccc210373907fcd9a2d18751963a36b81611d6

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io-0.24.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e7fa455503a5bd1d5e3febf584eeb9854bc9ef7764a2e2a9745144716737af5c
MD5 897bbf3bafcc3caa055fe1ace01c5011
BLAKE2b-256 6658cf4614a329e332b9fcd36899a4f924c9c8b37697baf85115bbcbfb9127ed

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 75e64fbe6993f2246e54b736f178d01cdb4b506efd88e3705d7be5fb0a4fb20c
MD5 aaf1ef14a5eb248aa6a74c0292eb38b8
BLAKE2b-256 51a6726a300f236a040d884f7cf155629e403ac3920c0cfd8984699ad3d19ac0

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 23.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io-0.24.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0b86365efc428c65ddfc924ba7fbf7fa0e59f511e129ee5dab6d312860e3c881
MD5 52c86833a6e6165f9e3457d50d8fedd5
BLAKE2b-256 f7a89f003e7589925ee81ea86436a61c4c3ee396fc38fb280957312bd00eade0

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io-0.24.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2be92fd56f81a5e72af4d778d5b3bea73ee9e384b67ca6a3ddc992f8909b1ada
MD5 b39e287edaaf5f40b42c2f7616579875
BLAKE2b-256 60e0bacf4d8f37f8d3347904c8b2ca910050e74325670b63a45f10a1c4dd83f8

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io-0.24.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 07b9fa4aa0772d4c7b83b49b4a28222253c96b1b4287c5a29dcf75394a7a55f3
MD5 61aac61c86426fa4ec51cf71850b79e2
BLAKE2b-256 d70c56f6d5c04137972f058c8d819475165af2a8cca253691d01cc2ccdce21b2

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io-0.24.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3457f67596faa26a47437ca5d976134e76bc460766a261486d10f2c690897140
MD5 46771918f02850d997fdb7b30fefeb1f
BLAKE2b-256 1fc6bdf6ad740fac259f88399dadfb95d16582c4dec450c153e4cca16f3d7ae8

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 23.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io-0.24.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 24d5845f56307d88c234337baa30d7a2311bda1261846c81897932e3d9d332b2
MD5 4edffc01d992691d81e8d9b8daeb8800
BLAKE2b-256 6c567295a558a481b8714c4e4e771424a78537c7bd6795640f2df252c58a37a7

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.24.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.24.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io-0.24.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6b677f7a4796241ae8502c1e26960dbb94b9244200920c56d47f526998b37d32
MD5 6d1a375fc61c0ef90fee11fa33f7e56b
BLAKE2b-256 a6571232c57e68a3f2c2306ada5c7498f3d1fb992ad673c6301fc35bbfba5fe2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page