Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.27.0-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io-0.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.27.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (25.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.27.0-cp310-cp310-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io-0.27.0-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io-0.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.27.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (25.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.27.0-cp39-cp39-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io-0.27.0-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io-0.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.27.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (25.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.27.0-cp38-cp38-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io-0.27.0-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io-0.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tensorflow_io-0.27.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (25.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.27.0-cp37-cp37m-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.27.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a0972bebc6fda82dc3e82458822f516c91ceedd667fb4f053c52e7b627843531
MD5 7684ea795a7f5462dc219fa3075535c0
BLAKE2b-256 24c591add294b7da75b00ea09cb4c38aa622bae176a129d07cf5046ccd345175

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.9 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 271618d7e204db3cdd1f85d6aaecaa5ef06dc6b560962b45acd98b76a5403bfc
MD5 f58c7bf95012f8412c988fac96f162da
BLAKE2b-256 8a563a4b1a7ee9194ba94c3d07856eeb85f0a34402cfb918e3209a8fc8afe137

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 25.0 MB
  • Tags: CPython 3.10, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f5db90e399c317435f9b25a43be9a0ddb984cd6e387652b5d4249bd9da6b5dee
MD5 9f0eb0ac0a8f862cd238cbc6d8c0ece7
BLAKE2b-256 54b5ea59f88f7344c12492ebab180f35e68809f09811edbaca82bc8d8c4ac154

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.7 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b15a4b92a8aae6992fdd59da4fb6c37d1c60e24147e8347868fe95b913b1c083
MD5 23c8e97e0e0b2207497975f3de5065f2
BLAKE2b-256 d1514e92a6e17e7161a197e23d0046585077679ceeaa7b24aef4d6b37bd01346

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 93d34212596c7662cf8af1acd92d4336b053c54ef9d3d1a9c1923b9c214cf0fa
MD5 b4721f668ed42ad48533b8275c60d632
BLAKE2b-256 fa72967eac55c3c3d19fc3d3961d78ddca58cb3b3aade2541e941f515391ef67

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.9 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4be479db0230031190e02f1b97979bfe7ec7c487665f0e6914b88066e8201158
MD5 e5586456a979f538fe3f520e43368ee6
BLAKE2b-256 2a4e5b1bac8e10d8bdc80074e3f11a656d98e70ad38391b643e9811cc5ac5222

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 25.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3d8e525751449995b9f0220f94dfcc5a14e86e6dc368092a9bd1becd654ecfd4
MD5 51c6337d75bfcb3ac9c5bebe8979a314
BLAKE2b-256 e1cdcf73a5530df9e409e2249da6b5bb8775e1effa560237fa4f88d858dc7931

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.7 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e054b6f517a0535b5fa8b660c27bbe62d6122a2d910cc7dae8b3d7b50cdf97c4
MD5 634cdda919c68e91c1baa3b746e9927b
BLAKE2b-256 42c122ba369ee91678c7c4a85174114a71fb3f78ba4c198135d3b04c276729d1

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0d1d3bf390417d49a4223a5076677cb486f717df5740517934f6fc9a07d15776
MD5 55a2573a804a1224abbf90837570fb7f
BLAKE2b-256 0fcfdc0bb6aa86396a6e669987e5c7332d382147480e33315a6b694d6a9d5b11

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ab91a3866237ab9aa522762350597986382bb9ffcdab08959244ddfb54649718
MD5 837b2fbbb2549cfb26e5a84d23f32012
BLAKE2b-256 6070ea0712c3e799d8a26c6d5ccb484c37513f6de56e2e566e9cae2225887d04

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 25.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 261dc7198a41e3d04b2a94fd8e84a11349abf709e3dd400d8b5d16e07496be6c
MD5 c758259b2794b52317828698a6b1af1d
BLAKE2b-256 67950c2ead5ceba79812d71327030f790c8a6eb215a5bb61ebb78ee2444f1a2f

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.7 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 246e94aeefc156325c093d1f300b0c802291cdb8cf6264463e54364b4eaf784f
MD5 503ac5d6ac974945f218a7b72daabcf2
BLAKE2b-256 e8bdfb4188efd7ef2f9bc89d0a5148aa76e6777f89f1cfed7df5bcc1a5488f44

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 71fd828970c3f80f63a8a39e3cf6078a783290cc2d8319db5e5185338ebbda9a
MD5 5ef744559740ee1780c58868f662dde1
BLAKE2b-256 0adce32de830c4d652303f33d15ce7569b7384e9972a7004d238d12e1617eb05

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 94a13b9da7738a0f05e0683dc342c8f7aeb3c6b61fa552b4dc28b83f24988a88
MD5 dfae1ab8ce751a4c8dcda45b992150e8
BLAKE2b-256 dbd8331a3191ef6e0607d361f0d9128a5d2b22ec358ee8756f37c40d955c8fd5

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 25.0 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0b99616acfbb754cacde895a4ee697a5dce5d2244d33c275171a04d5adfbd9a5
MD5 2e9d4fd57d2c590af8e86b9f738ea777
BLAKE2b-256 09839314656ac33f0c247f549a8c6e6970f41327fdbdc1dec192d455ae75c96c

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.27.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.27.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.7 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io-0.27.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9792ca145c9d46aa708adfeb98fb1992f577272a41b4a8606b501d270d682686
MD5 34c194b84c1809a458fc42d150d38848
BLAKE2b-256 575b75b1a329122583c2c78a105875564befb1a09660fd079cad4eaf3e5de7ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page