Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.28.0-cp311-cp311-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorflow_io-0.28.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.28.0-cp311-cp311-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io-0.28.0-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io-0.28.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.28.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.28.0-cp310-cp310-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io-0.28.0-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io-0.28.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.28.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.28.0-cp39-cp39-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io-0.28.0-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io-0.28.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.28.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.28.0-cp38-cp38-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io-0.28.0-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io-0.28.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tensorflow_io-0.28.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.28.0-cp37-cp37m-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.28.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 195d2324019dbf0e6519ef30cf190f517fba5bd17eb9d0fa988da67dddb4753c
MD5 351c340c2e5237cc2579b534d8883dd8
BLAKE2b-256 4981d7bb7f642f107ec4bada8b51487d865b3b4d1217e4b9e0ac005de8adf455

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.11, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8ad743479d4058d49710df95e6aaf03032462beeded49c1387d5e2ba365ef9ad
MD5 da014d5916ef94896351135814601c3a
BLAKE2b-256 10e10d47af2822777c0ce71539edcb065aca17355b9c276ce95355eedb234c87

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fa67977ed4472c41dd505a1c6169ceb8e84fc9535f538e1e4ac5125bcdea941c
MD5 b088cae429943f3b5d4e702f8a2ba628
BLAKE2b-256 a2c84bb856dd11c6b88f7968254c104e8f1fb705b21bc3325215f8f6bc480097

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3a8b2fbe85c4965748170ad65dcc99d1494dc09f23cb20ef15514240337f9f42
MD5 9b957daceb380e2b5fb487c7cd243750
BLAKE2b-256 4565170c327580505995eae2a136f095f90ab2ecfa417323f4fd6217829e8167

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.8 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 23b6ec4ee269c6f900cbd583dc480800095981d46df92f34defda7647322381c
MD5 4ed78f3c80e9d2409bf161f663598149
BLAKE2b-256 0789e8086491127c1b4be1aeab02b03ca8e807ac28511e4d9ae938b33772b78c

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.10, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3e0bb7e2678e8b726f2511068348f352cc13e7e309145c1c55f3479a2276c937
MD5 5713be26b3f6d9c3cb214fd7e7d70e6b
BLAKE2b-256 d839963bccfbb8f36722a52f2de211ec82f912fb1ddb7a821ccace3739492fe4

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b7f606f7be35c5d303ddd60f34e8efbb787ea2735078c0d48b70034ed2c2d808
MD5 95607287a5cc83f3ad475f5334c841c0
BLAKE2b-256 b6572eb86cb2c7072e6d03f6645c382073f9c035244d4bfdc66294459385f3c5

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9c346d336eaa2f007b4ca7aaf5904b30f98304030b02bde33030909231fed685
MD5 8db4159580ccb024036ba61b28e81e76
BLAKE2b-256 3089751b90c220a742cb73fc7c2d9da0885204c6de6d094c628beb0a5a8fa578

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d9e12fba20196cee6d4129995f63bee4211fe4bc16e99bfb9c1a9bc5299cce38
MD5 ebad6efd4a9ad05dce44cc385831bb8b
BLAKE2b-256 98a34ed0f9352bba9f8a347c83d98722627517874196a3693410173c94f60722

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8a72503a78c62077ff342083e68c0c019d3fd04125bedcf7b8b66e560217d7c0
MD5 3ac275d2864e95678d61a454aecfd66f
BLAKE2b-256 91c81ebae5d5583cbe3606d4021e400789ceb0ec9f05169fe6f5a26aa499b867

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ce8b2105b06118d5a384f592b6467ba917cae9384997013c47e43aaf36ca3a0c
MD5 7d1fdfd752b737c62e84865dd7c69396
BLAKE2b-256 9f16314a5a79c919ab25ed58d41ebf60912481b522fa7b8e086c17b8e3f18c04

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0dce55dca0c48a28a0c0bd65114424e6cf07369d6f84da95c40a802d370ad563
MD5 88922d9e5ef444111be8cebfd834517b
BLAKE2b-256 40feffbd649dbf6eb55f498b0db8e1f3eb68e33bfde7469378dac9bbf21075a4

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0df8219a6eee315dde1c7ea8acbef5e82538055b6f2fe148da929e906d46f49b
MD5 4df351a3df7e1f0b2b0721a655f913ef
BLAKE2b-256 bb5402fa0a1a5882697f93b46ec25b4d82e5e4f935f2e1018f73d4b9aead0fff

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f53e9b8cd44f206e90dd5e349b70f6c009d2a683b787cde6f039a66e36962aaa
MD5 f75255bb20c35a327fdba11b2e16e5fc
BLAKE2b-256 95758adfd3489b4dc0da2e8cd4d976dbb700e67048498f3fd792546ee93ff1fa

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1842f1a70c175959cd8cfeb686042b198374969943a91cfec0d7820987849c96
MD5 dd133a7b644c716cbfebada736116775
BLAKE2b-256 65b3033f838f0501a2fb0c0a12f141668108ed6d40f66ecef603f4030f8d908a

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5574f4a9924d5cca8a1ba8267dd5de0b40d0994096f5f1233a9062bb673605d8
MD5 518fad7709754102b05f0f9f5127828e
BLAKE2b-256 16291880b140e25d05338c656696b6206424d808aa62c984a9c9d29ca47d9a93

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 97e23e804df19390bd60c51bef1e312f3a51c2e610322fbf0bdf7a1331c70238
MD5 61992e8bb3fd00075a5c294bdf9628b5
BLAKE2b-256 297556b063cafc7aa5b022f5bc6b06f43e5847be218e6289385bfc22508da8e0

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9d006d62aa2696191722e4e6bff50c6175bbda066391f03f2399913840b42de6
MD5 fea29d5e74750f81f87945673d1478bd
BLAKE2b-256 0d4f0966b84a75b75d88a3998178a224bbc6f0ff051686416276b5d62c3679e3

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.28.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.28.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.28.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 240d35f3ab656fbc23761646fc0e03158d8fc9d30239ccdeaccff174b572fb51
MD5 6c4b3f0fdddbb177fc55dd8d1a4081c6
BLAKE2b-256 fb3bbdee0d3182ba8033818ec617c48413b6010106d687c568d78a5d55f5dc05

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page