Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.29.0-cp311-cp311-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorflow_io-0.29.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.29.0-cp311-cp311-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io-0.29.0-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io-0.29.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.29.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.29.0-cp310-cp310-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io-0.29.0-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io-0.29.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.29.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.29.0-cp39-cp39-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io-0.29.0-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io-0.29.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.29.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.29.0-cp38-cp38-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io-0.29.0-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io-0.29.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tensorflow_io-0.29.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.29.0-cp37-cp37m-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.29.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7b0064f640b8c06509139343bff52e5400fbd1a9aedb5b1149c49063c7038ad5
MD5 c5dec6fe5c91b9648eda22b7dbe2c878
BLAKE2b-256 0bb1a54cd3f8b7a5e5ad28c219f8654e3ccdd338b160989e036511f0d4035160

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.11, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ea914865345e16ab51767a67e7d7000aaa0c1bdda5f0803273544f5627bd6f3b
MD5 cd72484eea35e16d2d9b95f45db6af7d
BLAKE2b-256 5f52cbadc7ad9b42ab9827a302804ceb91c05c222dd7b0ce86c0ba5237c4a4cd

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d9b847d4185d7a329f9d8c72ff31ab57f7746f35323d000223524917bb612f4b
MD5 0f9eb4f07df4937e959c7af35a33ca3b
BLAKE2b-256 e37f592d1da857f0364a926521ca00ba27114142c32a2e26823a1d24e8c0074f

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 26ef922beb4b72ebfe9d9ca87d8390b066a50028f6dc1605813fc781e2662001
MD5 0dbd0f03693a2f68ee3089d52134e480
BLAKE2b-256 02c0f291a8899d7404fc56d79ef9357ab8edd034dffea96a55684d0999ad1973

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.8 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8628c28d9ebcdce5c905179b167bace46db6ebc9454968e1347921123560973a
MD5 ed0046cf63be844e5a4b14a845a384c0
BLAKE2b-256 13ede7c978fb16567b6e9137ce721604560573ff197a88f937ae11ff8a65e854

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.10, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c7170ef0f12cbe655fbba9b45df0e8d53c6730b323bd0a4252aaf6c9ed3c60fc
MD5 9158f76efa0190acb60ee1abf6ab0fb3
BLAKE2b-256 5cadfba53f7b6640eab1db33031097858559d0320a8919c74e30bb7e8b1df769

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 aa0ecc32cd1eeacb313329f49dd6cabba4d42e74b3a1ab2e97c25d91e02fd1e6
MD5 af0cdb2f72ebdc9abf2f4530d1633a18
BLAKE2b-256 0d60b1aef1d9685891324eb3675c922291f2c03a440fbe60e273ed35a84c4edb

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 55980d53a3f3904733144d9a85a3fa78ac7bfe4827ad29cd84b189c710bf20e9
MD5 ca3b24535849f92b55c917b5bd022dfa
BLAKE2b-256 5639c35a2e82ec53761ee345ea8f76e1af393166e5a1432ab35b753f37036407

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 021c7d3e2d0fe4d20f8939610d62087aac57ca7dfc6bb1ebad392eef88e41e0a
MD5 43cd8d7d70d08c7842fc211b4c85f66e
BLAKE2b-256 76a125101787d38d8b2e20a3563ed32cce25c3aaadc198d7a14dec6783b4f4e7

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1a9af0359f871741863b0eb8ac47472e13da4f710cadc20c6206e199b7efe887
MD5 a8abdf73ada71ab260259c0e25a97c53
BLAKE2b-256 17bc2212fc9dea84631bc63acb188aeb30953500a5fcf42b44420821574ddc8e

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1a8b6a463cb80c4d63e6ee69f6e198a674516b34e8be466023610218fe50516e
MD5 77901c3aede223d93c4a9117e620d3c9
BLAKE2b-256 0cc4dd794cfb0089e8e1626ae7a826c2935942713a3e9db32e0c8627ecbb4156

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6f8b04c8a9a9c1b49e065af69680c7de1265806cdc1fb09c851e7d56efb7eb2b
MD5 49767268ec3c38263f359a0f33420185
BLAKE2b-256 2a1ccd15a3c3c64c6bda1d784771d9eda227257b2959ba7443ae6e41498bdea8

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74ddca5816e1bbe97aa7e2485b97b2d3a04a16bb835489a3fa3d00fd6d43527e
MD5 8a42cc3ef1ffd7e5118ea809cb33d90a
BLAKE2b-256 5c46676cad93fb1f57fcc6385fe48000fbfd126e6931fb7db126fc40e9875d8d

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1ab5791d2bef91b807c0dda2354a4aa44f233b5f6adc105fe4a45007c3a6d57a
MD5 225932e4cf00d9528da680b5c5bed47b
BLAKE2b-256 7e5ec258db4f95c2655c3653d4a2927a0730c6bd54f88cdc6cd5ca09ad1a6705

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cfee68e13fc69dca1a9be600fa1298885f74af487511041184b9f2b9bbcca4f9
MD5 e9b289590d06a526970c9d3dad4c2041
BLAKE2b-256 41e0903a239ba583758d237cc355ca0fdf358f147c7c75f9208b6061efcd7238

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 050bbaab654b91fb05930d69bf185330d6670a40efc1ad6100fb777142651641
MD5 e5502d4911e7249bd3a5e4bd12d69b1a
BLAKE2b-256 a667b1fd944186f578a2798affdae894637a7b8b6d7d1da607e270f552661855

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9eb8589f3bba4032da2f1f7a27f3812e7e2b7b1350dab6bf52a945e1137411d8
MD5 7358133a224f27598728df63e1a82c51
BLAKE2b-256 f14fdc15a933741a68bf3d5d7911e8e8e6ab733e9304459dc4ed04faa62f087f

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 807b6ac26ef12963e95d78a37a9d521c3e93965d9eba13b493077ce072c554e3
MD5 789005c86a52a63a58621a6b8c900d77
BLAKE2b-256 22d0a52040f587d9bdda1d60f1a1660c9cbdf853a1dec0b26992aa68f28f445d

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.29.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.29.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.29.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cf7f93c98cf107d1c68edd702edd7f573cd72e2d3e5c88c2e5c7bc2ed039a749
MD5 49af85e14b6f809370eb1d4b2d17a90f
BLAKE2b-256 67966da329bcaf572fd9239ac280a5f9714794294187060c0faa9168b7e0e379

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page