Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.31.0 2.11.x Feb 25, 2022
0.30.0 2.11.x Jan 20, 2022
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.31.0-cp311-cp311-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorflow_io-0.31.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.31.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.31.0-cp311-cp311-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io-0.31.0-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io-0.31.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.31.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.31.0-cp310-cp310-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io-0.31.0-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io-0.31.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.31.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.31.0-cp39-cp39-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io-0.31.0-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io-0.31.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (36.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.31.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.31.0-cp38-cp38-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io-0.31.0-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io-0.31.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.31.0-cp37-cp37m-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.31.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2c132700fa9b01651b6b2771a1baa5214d171d4f23aba226b1a621476073d2e6
MD5 857170a83b248a189688613d63f94c1d
BLAKE2b-256 3be7e59dffc32b53d2646d954b77495659363e0713cf23725781e9c7af2d13e8

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.8 MB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b004a5856cb06c56a0c747bba28bff81d351a9f3a3ceca2b9be98e0bae41c511
MD5 c2171ba9b708592a586045c45c0d82b6
BLAKE2b-256 6735c05f1086fa661cdf5efcb11bd3c2e7bf30bf07bc1ff814ee04d9e8802207

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.11, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0059b02fa0c39c4de04a186c190a8044008794b7ac7027d49144c6d1be02f193
MD5 141287ed8cd7cfc3431ce5fd91324cdb
BLAKE2b-256 6d8cde4958ea819914e023f51fc3f630241c30a170554bc29fc21a23cdef6703

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a7f45e2e5d3924815d80a7d1711fb41765cdeedf51befd29f4b035c7438f3efb
MD5 d932489b7d28fbb19cb2fc6b53b021d6
BLAKE2b-256 930ac45d34fbea13c47b5d63a2167352c2e12f6f6d14f4485a10ee220644ba4a

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4f3e34d823080b6843c36e94fb64d7a31e31f40b8d5352dbf2beb9da6749a390
MD5 3ccd80d9363a9528fe6b9284c4dca4ac
BLAKE2b-256 3557b86a5e86f78ec47c59310d5477ec74c87a9f31618343238d504e6726cd6a

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.8 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ca1ada09b9edbd7204b1592d9a471e748b779228ffe6fc754c28b7d0afe6e46
MD5 350a3ff3073f8a31ea234091dce95963
BLAKE2b-256 cdeb542222443e4b2e66e1b2a7e5250aa10d7bcc1ae178cdadd3e3fd12709cf7

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.10, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1f59628272c9afb4b5dbc5c989cd80d421aaa37d006b9348ef63c165c6a14c9e
MD5 181cb97f4b84fb541a9120b1bc470697
BLAKE2b-256 43d47410b3c2a5de3411241d8c851833311dde9cde1fc66d26621027bc24f841

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1de4c5812fd5e390ecf8fb95dcf5489c95fb05b1719aa6df2f9a577ea13b940e
MD5 e3763e6c941bfa96b0b9c8e59feaaedb
BLAKE2b-256 8e6d56b288ad3701b63a39a5c88d72c4daaebf7ba2f5f8c61d733103696fc167

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a84b770fa62d19ecdc6111777edbe090df512d20119d9f0aff01f98ba5588fe3
MD5 c29e12bf1013fa89a1a348a4fada9f30
BLAKE2b-256 63c4b1588a78ac4f0445be275e1557ffec274f4ddad2a6f47c019fc4cb817a4d

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 84bc1b8ca5ed0dfb9de833bef303586c1582cb2fd77e779cf53535081f6ed2ac
MD5 9d714420b4e70bf088e8171c35f4e3ed
BLAKE2b-256 9ad5320b189cace3f13750d4ed2c6c9af3309bb4b40df4f3d9e10917c9102a4e

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ef79a870e89dd567563223dc4925e5363c702ea47d9222e5c7fee0e79001f14e
MD5 60629ef11d03432d92f5609beab3cf93
BLAKE2b-256 d3ba1ddb2ccca03d2afd4981dc476fad72f7b7fbf3b9b752493cc5a493e09d03

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 647c3fcf2eba2bf155bb513f5935ad038ef9167ef1ee2983867762c3d661a60b
MD5 b0bfd2c806df5997e227f1334e8c9e60
BLAKE2b-256 82065bafd38afe456b2576619af3764f9d4c3f7fbeddf739842cbafd7b494f1a

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b6f6717f2adfba93b48730520c002a8e32f6e3055b5865a7cd22d6e49fec6a42
MD5 3155736e5dfc671bb45baceb85ed2299
BLAKE2b-256 3f7d6078ae2ab06490fb65c7821155927429b9b6942ce87c9a89db2834b06ec7

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 36.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0b524224bd3d6893fcd63582a877dc30724f8313027251f5213bcac4b8a2253
MD5 513a19a431b7a2b82b51d2971d15b974
BLAKE2b-256 80c6a128f461501b34c45ea04098cd1bf20f524b64869feb8a6c927f7ad06952

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2d8b9ad7a8978ce2a63372763173b502aee1b564ffa55cdeb98f73675bf2f3ec
MD5 12278d9b275b98fa56c95704d1e64b8b
BLAKE2b-256 021c585239927d1ca472c39d3e3143929052cdd42b1d57b942b9e6f031558c7b

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 041ab5ce726043dbe5344d63a37450db7f7a75ec5f1bb92ec1d2e0d4b96f5785
MD5 189f8199f8ea954c9c9c1af085f15a8d
BLAKE2b-256 7ada3ff8b0d91cbebea94d025bc23997874ab4f37863d752fb59d50d5fc2beee

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cdfcc23c5bdfbb1221b3031fa0ed3129cbe6fa16fd122cd48636d05a3abc9475
MD5 1b9aa87d8395b7a718acab208f8e093b
BLAKE2b-256 d7c96ee7315e8a902ccdd75077d17dbc03bacd0656a1a3621cae27864c06b480

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 26.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c1803f90597badf973138d4d702572d734f4b54f1a70864dfcc8d9154bf01ae5
MD5 25f5281787199b0b86466909d6656705
BLAKE2b-256 069ba7168114eaa9cf85d347743b5f01e61999214e859d796f1d5d7375a7708f

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.31.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.31.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.31.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0de04e61fbba8258e5c5639436ed93728b9dc2e67519ecc2859b7ad4f74d9bb6
MD5 12786fb720abc71a697cf0fba974e2e1
BLAKE2b-256 d910ebcb64ed6bb6c5402acf7a29ce6798d5426549b208f93465f5c4dfd40957

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page