Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.32.0 2.12.x Mar 28, 2022
0.31.0 2.11.x Feb 25, 2022
0.30.0 2.11.x Jan 20, 2022
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (44.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.32.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.32.0-cp311-cp311-macosx_10_14_x86_64.whl (25.2 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (44.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.32.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.32.0-cp310-cp310-macosx_10_14_x86_64.whl (25.2 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (44.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.32.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl (25.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (44.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.32.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.32.0-cp38-cp38-macosx_10_14_x86_64.whl (25.2 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io-0.32.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.32.0-cp37-cp37m-macosx_10_14_x86_64.whl (25.2 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 44.7 MB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d4e9fa104df7b65fc4f0b68df7df79544f4c08b4ee57f56b08bd876071ebb481
MD5 b44772e464e32f0aa770ba59b3ecbf68
BLAKE2b-256 784e806bdc10880782524614180862d13ce9b17a82a2fc6bb04e1ed4fbee3ea8

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.0 MB
  • Tags: CPython 3.11, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2a6a40c822a42df3dd4e42de41028692580cbe1e1f711640e57e1f47f5d426a0
MD5 ed08e5539d8d8e68b555654343f0c765
BLAKE2b-256 12d33a2870af14044dd90ad28d5e92d15037f9cdca2f2fdfc4ee67055e0fed11

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.2 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 065789d3d810101c5bf4587018754d3d4d55102c21e924a94afc2eb7d5223db0
MD5 b8387c83f24b578acdd3923c0fed268b
BLAKE2b-256 11b8af68935a0fc07fc9b02b2ec6dfc3db9c6f2997e85cd78a3d7fb8664a4f25

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 44.7 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45b7ff237477ee8df2f4f2b4ab6bdbf39c2329fe4bebcebc35590415d014ccaa
MD5 958f639a5c6394a87f3a770988929355
BLAKE2b-256 2a8279fd91bc05f6fa77ace3698516df1331691cdb5533ac7b1c4a9818e0ddc1

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.0 MB
  • Tags: CPython 3.10, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 947d95b82d48328f2980571deb9e91d588428f3c9402696fd5cdfa50d540b5cb
MD5 597a14c60fe1e724be4391addde4a484
BLAKE2b-256 b8a4bf306c389fd94fe8709e63b6aefa2dce33de20577264e6b3ee6153764e2a

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.2 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f8598196050a6ba6d3038ae9613446ca0bfdd4423c9b65477a5efea796fe76f8
MD5 63ca30740ad73e4ecaba1718f2b1b0ea
BLAKE2b-256 24eee83064a78eabba516d603de534453788e0797e424937c44615534c37a025

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 44.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6b67411f1bbbed71d9b6df4e1d27f411c75e68d33348803745ff4350640ec225
MD5 dcf9f257d59e76e18e8991a54c725032
BLAKE2b-256 bd2ab83d5d5d8b941cfe759b30ffc83b9f7e6e1079f506148552da6659d22848

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 02133607b53a5c91aae764ece1fb064d795b400a3a644abf832b84262fa2c672
MD5 8115f21eaeee715d592750df0246cee4
BLAKE2b-256 0c2746531490b61c08a3fdc57af4f5294b0853483fd3050f25ba0b764c12c06c

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.2 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6d1d8509af8ef87eb3b68b82cc7f8b9507a64d14f62039bacdfe48637b600183
MD5 b18e38ca8cc054ca72ad3883c510e70e
BLAKE2b-256 2b890d2c43300a92f4765f2827a3556e37ee31cbb3a82c6bb3b1a5cbf1c2a898

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 44.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d786988dd36fe8e5562fa319052058bfb46fc137343ea6df5b46b1cce8988a26
MD5 25764b0db40aed0cfda2fc083c122c85
BLAKE2b-256 2157ed00f73aca62cb0cd8a415c5e76eb49367ea8d32ee28fa804c4d3e446819

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a1d3b4f098eb6b1ac627a97ca2ac695cadab9c6d8a20edc264e829a83d87db83
MD5 84e5f9bd6fb21de658f9809e9c0d31f1
BLAKE2b-256 0c8cf1d8d750085f5f60f5c6de1173fb44c23a52bb686192d207c31250976e08

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.2 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 32cc187526bbe9dbc53bf7b071bb1e72ebba100c5e1b8416d96a4d5a38468127
MD5 8c9a2343a18a2f226093e2c218c03b6f
BLAKE2b-256 c8f2b5b1a9710f03398c4d77778aea914fbd6ceabad74d9518dd0e7a4dc6925e

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.0 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e59998d4ed252ae197c78f75e337b8673db8a51765bd7a4182d8e6904464d136
MD5 cdb4691ce5cfbd9318d19ca1e7451f63
BLAKE2b-256 ed10bc97ffdd7bdab2a5b49d174f221a0993266aac7f2b36481c6683dc6ff3da

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.32.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.32.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.2 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io-0.32.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dbeee35efde66e13856a69909cb3f12d1019a0c6d45af239385f9e3fcb056ab1
MD5 c0e5427b78870ff1e7e6b2ba2ad91980
BLAKE2b-256 70dda7bec4ae94b1ea7a5401e92502117fff38e0f08d743478975b3b110a2fb7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page