Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.33.0 2.13.x Aug 01, 2023
0.32.0 2.12.x Mar 28, 2023
0.31.0 2.11.x Feb 25, 2023
0.30.0 2.11.x Jan 20, 2023
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.33.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (45.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.33.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.33.0-cp311-cp311-macosx_10_14_x86_64.whl (25.2 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io-0.33.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (45.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.33.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.33.0-cp310-cp310-macosx_10_14_x86_64.whl (25.2 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io-0.33.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (45.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.33.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.33.0-cp39-cp39-macosx_10_14_x86_64.whl (25.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io-0.33.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (45.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.33.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.33.0-cp38-cp38-macosx_10_14_x86_64.whl (25.2 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io-0.33.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.33.0-cp37-cp37m-macosx_10_14_x86_64.whl (25.2 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.33.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 45.7 MB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e3f70bc565f201734d60dc0a8461025c35612cf515be200d358ce7cdcedf122
MD5 b375b4241f4e92ece5312811abaad4b1
BLAKE2b-256 9e39d3223c85af2ff26f84e634b8a8b1bdb9b786a9acaef144c751ec34198147

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.6 MB
  • Tags: CPython 3.11, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 30890616de9f0efcd8bf9780d7f745be4770e68f3e6c4a0505774cae6a2d707a
MD5 a1a4f28e16cb2dc97aca7aa097101a63
BLAKE2b-256 a9ef70f9ed483b8783714df3d69134cdf01c1ec195207fb2c861438ef121d888

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.2 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ef98290b3c8fc1894f895333a3cdbb6a36d889657388e291b180955a7dc1172d
MD5 0ebc37d3324c2c945b099f9848b00bfc
BLAKE2b-256 6137c74246b67f47c379edf9f0840224232cae17b4eb8d9e045ed4d761fc2ceb

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 45.7 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 32e32f57e6157617524838f8112355b901ae6b3edf91e38abd37063680db1838
MD5 94a42da466d5f270b9e5614a736751d7
BLAKE2b-256 5a0b49fb687da1bbdeeb49972d982800df65b725113dc5e84edb107d440a3a47

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.6 MB
  • Tags: CPython 3.10, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c0939d41e4f7d71ad7270d33c487f7394257a694a5fca19d51665e23646ee58d
MD5 76e882e737f68d25f49a5d10787dca83
BLAKE2b-256 64d3d806a5084dab0bdea5a723f7242a4a230765aa92bac5bb7a66b7a4f06119

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.2 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2f54e9649ca624d68cfa55dbd6dc0440dff22eb6cc062991dd9c78eef22f18a8
MD5 99b01f7fdc7235d32752749ccd573e97
BLAKE2b-256 b4bd004d26cc53d1cfed7480aedc2dec0d794276af4cf51396bf470e1e1815e9

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 45.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 65a1c37267d374757603bd93961945948df1dc3e5931f2bdecce665e99866b9a
MD5 75049401c8f7f19e21cfb1896480fce0
BLAKE2b-256 469f0d173085c58a217b9c3e2d1fd3266ab380a6a8376e726f8ea82af1ae7887

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e12d68f21f680a723e6655fdf31ca5470f6521971a4258bd73a1153484cda555
MD5 4f713677b4b88c0cfe77aa9c256055c0
BLAKE2b-256 09266d7bf02eba0dd04aee1524adfbd5803f32cc9a007b8483e9bc3c3a5d0b46

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.2 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a86648d4d56fb3ea7bef7c1fdd0febfd1b3cada2ea42dfb376ad36718dd95309
MD5 36bef6c2476874f5a866fb1bda9ec189
BLAKE2b-256 158ee4039d7326bc37481bac9bc278b7fa874a508d148d669925cc5d3ce04925

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 45.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45412064e7b2d5873e734e74b364c2b74b6905c34af07fcac1aaed899ab1c12a
MD5 ed064de8a2fcf0061c711d24f37132b7
BLAKE2b-256 265fc877562e0f0acb506187fdd65c8950c599006f2e1d266d3db6c7459ccf32

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3427000523837cc33855b75ae52e7fabb6881b95f9cec518bd176782767f6f24
MD5 d153bdab7fd924d3eeb9c1c700de87b0
BLAKE2b-256 7aeec3a870f839e4c7739931fbe1171d6d5baedcd13c8b033dc82f4a47253dee

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.2 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2166bb742a02b31f0af5698be92b4dd9cc3242654fa7ecb4526c45bf794f610f
MD5 bc7bd5916b6dc4654aeb82f8389ca215
BLAKE2b-256 bc02478a9c80980d02f5bcc2a89b4753d5f8f96aef3efbe4cc781c6014685dff

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ce9cd292e61493e73037a62510c6b1e6be548393d2d0fbdd8671dca714cc2276
MD5 1cb93cc3602b38b048c61d58965e66b8
BLAKE2b-256 cd43e919ecfff7f1d5e8ba02f0b162c5b27e012c014f6b13e8939d5ff72cf311

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.33.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.33.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.2 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.33.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 05c03582830ad97925962a7399c4d708db2fd22853d246652286023fe9e9a00b
MD5 681c2a571ff6a70e77feaa326c7537f4
BLAKE2b-256 fd318837ede8108ff6a32fe5bfea42e1f6fbd7be249d59ae6006772ecdcb90e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page