Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.34.0 2.13.x Sep 08, 2023
0.33.0 2.13.x Aug 01, 2023
0.32.0 2.12.x Mar 28, 2023
0.31.0 2.11.x Feb 25, 2023
0.30.0 2.11.x Jan 20, 2023
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.34.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (46.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.34.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.34.0-cp311-cp311-macosx_12_0_arm64.whl (34.9 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tensorflow_io-0.34.0-cp311-cp311-macosx_10_14_x86_64.whl (25.3 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io-0.34.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (46.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.34.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.34.0-cp310-cp310-macosx_12_0_arm64.whl (34.9 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tensorflow_io-0.34.0-cp310-cp310-macosx_10_14_x86_64.whl (25.3 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io-0.34.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (46.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.34.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.34.0-cp39-cp39-macosx_12_0_arm64.whl (34.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tensorflow_io-0.34.0-cp39-cp39-macosx_10_14_x86_64.whl (25.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io-0.34.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (46.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.34.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io-0.34.0-cp38-cp38-macosx_12_0_arm64.whl (34.9 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

tensorflow_io-0.34.0-cp38-cp38-macosx_10_14_x86_64.whl (25.3 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io-0.34.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (28.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io-0.34.0-cp37-cp37m-macosx_12_0_arm64.whl (34.9 MB view details)

Uploaded CPython 3.7m macOS 12.0+ ARM64

tensorflow_io-0.34.0-cp37-cp37m-macosx_10_14_x86_64.whl (25.3 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.34.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 46.3 MB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 61b08c744ce5cd147e9b1c343eafd2abec31e62ac30df808ca17652579ef4465
MD5 c014febb9d9c66d0f2dbad164abbf7a6
BLAKE2b-256 d22876c3f9dc5dadfed5feb23d99dc96483ca3c9c8ef81400171be67a6a22b57

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.8 MB
  • Tags: CPython 3.11, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2128203e29bc02b69e73aaddcd3c8300de515f5162163b3562a792bc5826b375
MD5 4827ec655aec82fb551f0838e2d3e8e4
BLAKE2b-256 03fc0fd39cdffb4c61bfd0bee7c5ce9586e35005488fe82f2a3e9016ac0a7e06

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp311-cp311-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 34.9 MB
  • Tags: CPython 3.11, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3c28e431c764f6ac0982ee22d4f80418dc75def08f0f3e4127303e83a32387ad
MD5 2b08af3f2e9a48ebbf58b758ddc60dea
BLAKE2b-256 0dcd7abc497cbdb056cd22d4740ad735c8bce42912b142368185e99bc40ccc46

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.3 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 23e8fd912594015f614cbced436af0853834e18a252a411ef6ad6e7db71d999c
MD5 5114831f3071db6a9737c5197782735a
BLAKE2b-256 d331a64bf5da56962f3a18934bb2893af9a1e3805ea9856e895364a0a8c102b3

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 46.3 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 99744fb518a9e19964a5e4c4d3b38237f5ed868e8c8eb5fb3fd395902525c723
MD5 71b079a996a881f13bbe75123b4825fb
BLAKE2b-256 0a57e7514534c267af0db6157f2c027645fe354301aa96a23889402e51b166d0

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.8 MB
  • Tags: CPython 3.10, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ea5e167464ccc49e4956542316e7c2fb048ba194bf298d2acc7bf9aef740fcef
MD5 63e66256ba84d9e50a2a8a7419126e30
BLAKE2b-256 74e6e1b9e62dad8eeb509c842d76363ed4a34cd17e2b751610cc993e57b14f2c

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp310-cp310-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 34.9 MB
  • Tags: CPython 3.10, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e049963442df000b7118624a5f34fb0d86cd8790b0a6a560591c5d5cdd1e4768
MD5 bb55f680ee9f68e30d5c456cc574633a
BLAKE2b-256 ab1560e87d8090d1fe9fda0234c7e6f6b83cd522311164704daecb3f8450fb7f

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.3 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dca644e41e3be6c63c23c6996468f1362cfa165fffd1c918427b31c800eeffc4
MD5 8e11ed8fa3fd1a3f0a599bbdb5bfc672
BLAKE2b-256 39bd6566c1bc746555a23a8a1b7033da39a71b12181cd792adbec34f76b769db

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 46.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a960d1b03153736f6170921c9c12e50c10fe11c0dc76f2109599fa59f9b9609a
MD5 bf0aaa8a98ee660b75e0d196d50da0fa
BLAKE2b-256 e9d4d23393e1866f6be8663a46561d720ac5bde853e24867a09ae57c015a0c36

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 65a40715dae09abb775f8af65c93c374ffd7072539be7608fa2c21abf99e17eb
MD5 5a2187dccab52d6fd9d9e8535d94831d
BLAKE2b-256 5abfd7f51941bc2bd0066fbab81d558e5a14cb7150065b98fa2bb7f3a545d0b6

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 34.9 MB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 fb4a96c9a047d3c9c493e8dac7a6a40e9a76dedfb70c45b36f5559ec46a57387
MD5 cb3f72953c4aee79284b1cde112cf8da
BLAKE2b-256 aef9fe666ecf721bf7a9b7f12ed4c6a05a5a7a73a040c1b5d8f82363612e4106

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.3 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e4c9762707c6b002e19878c7f0b157cc83110f2f8302a4719350e1e4aa6036f8
MD5 ad649ff5e2dee4864ad83c3e4199bcab
BLAKE2b-256 b9159cc81ee36ecab892940ddbfc147243fda64a1edb51c04474b0544fe4c50d

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 46.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4c08ae64bd08b9907a23dfe9bddb06ee649b00eb4e762f11bb4346c868e731a
MD5 0e9363fcbeb634cc5e48ded4761889dd
BLAKE2b-256 9f6e91cf1f26445fe124e36451cfde7a66c1e6153dad6dd21be667a8a264fa5b

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bda463ead20eb73112d4e9a32ba76ea956417eb7c28f56bc928935da0b4d1f61
MD5 763683a643b0898941a247da75de78cb
BLAKE2b-256 39abbea6bab2f4dfaa2107fc402d184eba699715f6ecc5608321d314431abe79

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp38-cp38-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 34.9 MB
  • Tags: CPython 3.8, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a27e070916b5f3c7fa809a84c471cd0f25ffbc334557f891d56622ee6e2bf471
MD5 1022a1b83335857164624ad2e8bcaa4e
BLAKE2b-256 b872ebd9edc5cee97a4dd438cd20bf2296c0a29e4a4beb638a7495b62fb7fcae

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.3 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 30e10afb5401fe78e77e32c14a85108302defe9b3e96dc52692a1747ece2e9e9
MD5 6f121b9e12de448506f6446033139352
BLAKE2b-256 de0d666a8a5c74b92416dab65b378623c16a7d0fe7978b679f10a47edc053c5b

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 28.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9e45334780b18696c66b7d408128a38dbf67ab2700ad1f518ca271f9619095a6
MD5 0e326c9064f269c16c72af5de598b63d
BLAKE2b-256 f4a8f8401ef7ad73748904d6c7227ab7534fd009cebc4000b97f4b714345dd25

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp37-cp37m-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp37-cp37m-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 34.9 MB
  • Tags: CPython 3.7m, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp37-cp37m-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 bc5d9e6956e18fb225bc6c2f9757e9ac2c9dc0f6c0115b4efa91a7fa6d3500d5
MD5 04fd5fe5e4c6ec669f28364e2fb61145
BLAKE2b-256 2d5a3e06d58af063cb5ab12ba05f697cc5b9b84f31fb780bc2668c6c00eeb0c1

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.34.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.34.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.3 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.34.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d66eddccc0704284f30a8954cdc55f2400288d82cc143f605b3a5bce99efca6a
MD5 d8dbaa65ef53bc8bf71a5c0604c9fc80
BLAKE2b-256 5d665631eba5c256dbdac950875c148afe72f8f2ee61b0a03c86bfe20cae7b0c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page