Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.36.0 2.15.x Feb 02, 2024
0.35.0 2.14.x Dec 18, 2023
0.34.0 2.13.x Sep 08, 2023
0.33.0 2.13.x Aug 01, 2023
0.32.0 2.12.x Mar 28, 2023
0.31.0 2.11.x Feb 25, 2023
0.30.0 2.11.x Jan 20, 2023
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.36.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (48.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.36.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorflow_io-0.36.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (48.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.36.0-cp311-cp311-macosx_12_0_arm64.whl (31.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tensorflow_io-0.36.0-cp311-cp311-macosx_10_14_x86_64.whl (22.0 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io-0.36.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorflow_io-0.36.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (48.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.36.0-cp310-cp310-macosx_12_0_arm64.whl (31.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tensorflow_io-0.36.0-cp310-cp310-macosx_10_14_x86_64.whl (22.0 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io-0.36.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorflow_io-0.36.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (48.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.36.0-cp39-cp39-macosx_12_0_arm64.whl (31.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tensorflow_io-0.36.0-cp39-cp39-macosx_10_14_x86_64.whl (22.0 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.36.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 48.5 MB
  • Tags: CPython 3.12, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ecb07798d17c912ee7b80b7c377196a451448b20e431dc53bba708f905e4be5
MD5 17f4d26df0343cfae83eed6d981382dc
BLAKE2b-256 3d206e535528a6ca0da756467ab2b818244afd232517337cf271e4c34187b742

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.36.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 49.4 MB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af843f1bfe217a22cda2c549167aaa9c02dd1d345d9e843a1923ef107f27cff6
MD5 2cb45a89a75fb820838768b592e2ea77
BLAKE2b-256 a50ea0cf8e7d67d60da20d437bc204c8a8b98f2a8455c2ae75ea2f1809c6a66f

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.36.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 48.5 MB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 feeadf00e942e35c86ac20688c414cea0489c6e1fe7446021535ca2895b2da15
MD5 fa6b9447b57ef16adf66086bc6cf76e1
BLAKE2b-256 54a516ab3004a3b23ec3f282a951865f8ce8c29b02da56018c9e46d5733f1e17

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.36.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp311-cp311-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 31.3 MB
  • Tags: CPython 3.11, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 55e401cc689c0ba4d8a8b3ed4b5c88e520ca3f242119a93c58c62de401a99672
MD5 09c8e03896758e637d0c656bbfdfbcb6
BLAKE2b-256 70e86484d095a7f1561204094c8466f75e8f57540cd437325e12bd49e78c67a6

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.36.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.0 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 91d1b763432a1aa541c40cad9bd29fc956e4650c3470ba58e42a54f0ac702533
MD5 4116be40990cf5f8b51aacc51b176c26
BLAKE2b-256 d296847b944c59593fa0de0944761e6da0c8d0521c4fb2637f3a0a8b03b40e9e

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.36.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 49.4 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce5240b44e61f0b57936572c616d4809957c2c55c71857e7fd41deec0fccc10f
MD5 960d140693bc17ed56f34811399a7d31
BLAKE2b-256 681427153bf66a529a916af98d754fa46127a35c39ff066f9f2f183673ca8a15

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.36.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 48.5 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 65b4af53f0e1dbc86ecf7476e58dfe04547a58d39a5f5e16d0290813e56b241d
MD5 cf767e854fc3bd62c0db1b3b67588fc4
BLAKE2b-256 efd80b2d3bbce4f2f382fa701bb83780ced66fb1a5ffbd5814608c5d2ce5adfe

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.36.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp310-cp310-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 31.3 MB
  • Tags: CPython 3.10, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 03851682951ad8550b8f565576d87dfae7574b1088fcd0e4f440f2b115cd06c5
MD5 d57b97fbde2425fa077cd8ce747bf7f7
BLAKE2b-256 1d1c367b777dce59276f7aadf10bf027bbf16d1bc8db861b01e11d7e25fe4c07

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.36.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.0 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3627e437b0fb3655c860d0398e323d6e77c13ec9f79925cf430cfe986abd6e80
MD5 99205107e818c3883f72d5101ab863c2
BLAKE2b-256 d23752d0873c35001ed300d36f5c7008902a8162cd53c1f262de11d9ce03a7dd

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.36.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 49.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7035a74cbbda437958d35f18cf4a4d71cfebaa7e5314a7ed7b61f33f02498a2
MD5 2b59609ee6a6f6e6411c9346627bed9d
BLAKE2b-256 bf5b3139edd9c088ebaef7c89f861268a6ba47ccaeb8c59c0037d158c57ee438

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.36.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 48.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 23fc02e5076f021cfc1a3850a935ced16954d1b44c4c49680cd6855e3735295f
MD5 1e1ea9d19150b7954ee98865407ee08b
BLAKE2b-256 9d8f072a7f11bde9821e619dcf3ad4c76835eb1fd37f0022635aacff33d520a9

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.36.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 31.3 MB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 7077b4c4696bc07963ac69e2ba530ffbcea850c7a594f2c86aaf67a2bbcfe37c
MD5 52b1b7560571684d481154a6ed0ea386
BLAKE2b-256 7f15b9fc3b017464a3b5119edc5a2899a0fd5e1bdddea1b3607799111e4dad83

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.36.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.36.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.0 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.36.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 647eec5a504c3d0377db6070a051f21e1eacd4b50ed37dadfd465bb9fbdb03e8
MD5 e789611869fdbf404e9174bec61fa8ae
BLAKE2b-256 bfa37eefad402dae11077ba0b1125f429da59703ee47ffc42e67e03ce9fa828a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page