Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.37.0 2.16.x Apr 25, 2024
0.36.0 2.15.x Feb 02, 2024
0.35.0 2.14.x Dec 18, 2023
0.34.0 2.13.x Sep 08, 2023
0.33.0 2.13.x Aug 01, 2023
0.32.0 2.12.x Mar 28, 2023
0.31.0 2.11.x Feb 25, 2023
0.30.0 2.11.x Jan 20, 2023
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io-0.37.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

tensorflow_io-0.37.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (48.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.37.0-cp312-cp312-macosx_12_0_arm64.whl (31.8 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

tensorflow_io-0.37.0-cp312-cp312-macosx_10_14_x86_64.whl (22.0 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

tensorflow_io-0.37.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorflow_io-0.37.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (48.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.37.0-cp311-cp311-macosx_12_0_arm64.whl (31.8 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tensorflow_io-0.37.0-cp311-cp311-macosx_10_14_x86_64.whl (22.0 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io-0.37.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorflow_io-0.37.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (48.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.37.0-cp310-cp310-macosx_12_0_arm64.whl (31.8 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tensorflow_io-0.37.0-cp310-cp310-macosx_10_14_x86_64.whl (22.0 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io-0.37.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorflow_io-0.37.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (48.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io-0.37.0-cp39-cp39-macosx_12_0_arm64.whl (31.8 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tensorflow_io-0.37.0-cp39-cp39-macosx_10_14_x86_64.whl (22.0 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file tensorflow_io-0.37.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 49.6 MB
  • Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17e61f6818617f4d473e72606d5833444a04e944534a8d208773dceef31a6388
MD5 1940ae8e6a1cd6d263797f3bfce9051f
BLAKE2b-256 eb7279f144098b4d3cacb331434c422b6ad7065a790378542357b04ebcb240aa

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 48.6 MB
  • Tags: CPython 3.12, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a18a3e0cb65f5bd202b3f6727d1d3520a5fc9174c04507c2a59a5c75d5352182
MD5 bbb77963c04afbf23c03d70ae0f4f3ce
BLAKE2b-256 f5866224e988d37429b46eab10821a3ad7abe48d287da79be7cbcbf6a8e363dc

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp312-cp312-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 31.8 MB
  • Tags: CPython 3.12, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e59578c558a62da02b86495ff264fe7261a69f564aaeb176f4e2ba67c50c8807
MD5 b99b59d8f22b911a71161bf28601fd54
BLAKE2b-256 fe28fe0e29dd54448748650e5c3f8dfaa4cf078b5ae1d5ddfe051a646a3103f4

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp312-cp312-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.0 MB
  • Tags: CPython 3.12, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dec5358e9f0a455937b9384e40dbf5b48c4beababadec5eb67de6650e5bbaa97
MD5 db64a60a55c80abfd1f22939e0184fbd
BLAKE2b-256 a055263a8ac595442a39410c281d236b993a566245f5ac48257ff06a69bf22df

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 49.6 MB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a17290d68b79a5dc96537ebee30f3c05d1f89d66cca63cee19cb54a035ba8465
MD5 4ffebebd05f7b13402b1f3437fe34295
BLAKE2b-256 55d36b81e177d0229294c95203e5c9dd8130773a4004a145625dd5f6b5099bda

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 48.6 MB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 df8ceb184faa976cbef27ac9736c999b08e4ddf126e86206e1f55dc455e6357f
MD5 76e8f38b7d7b93c90aa2c6acb683d162
BLAKE2b-256 8775067fd31144816afcb5ca0cb45ec4fed746aa1113b3b892f5d0ae99377ca7

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp311-cp311-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 31.8 MB
  • Tags: CPython 3.11, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 812b1466fb0917b69b92aa616689c34c1cfcb1d8c47823aee73207a344ab0c08
MD5 a2a1728d00100d52cbffffe0be471f4f
BLAKE2b-256 0ac263c43dec6143477875235a13c70cc076a8978481a3c17ef1edf047912293

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.0 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 963fa0ceb71a9d40b4101deea3aeaf819f7c64d18080c3b7ecfd761398dcacd8
MD5 8d21a9447dbaa13b283187adfb2110c2
BLAKE2b-256 fa8ebbd03d8553b81ba9a7b31002a16770a50982df44be5778ed868b865317db

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 49.6 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f6924532b487d1d1d22f71f0ec0d5aa3faeedd67a742ece97d9a2f3aaa9b5e8
MD5 5511e343ab117833620ff26a7a33992e
BLAKE2b-256 643b2c5d9ae06168a6541f9406a685898eee60bad89ba412f65897dfa463aae1

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 48.6 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 24133ff7b12414323a7edd5f1da08a4d32d6c12c866a60631e018b6f2e845d6c
MD5 0c774e03c8261ce0c004dc37dd737e78
BLAKE2b-256 3aad8085896415bc52c891b3db4585708596e624e470f16245f872b381b7ae4c

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp310-cp310-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 31.8 MB
  • Tags: CPython 3.10, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ce1f6e2e36f1c53d7e960370eff5ce977c8a24853b8a334532aaa1b46f60d2b9
MD5 09a721f8512c79511556a64b9a223cc3
BLAKE2b-256 b0e490ad23684f59c368e8ce06c52eea9786bdd98a688bc0e03f119ca22038ca

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.0 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 df3e494549488fb5a37f358540d4f01f774d819070817581facfa1c7df3a08db
MD5 f103b40a74d26535861dbfd2a0583047
BLAKE2b-256 1f19ee17dcee84730734df137f5e7e3c47fc2d1236a853c227d7b346437e4cdf

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 49.6 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68f2251657135a0f0bdbc19fee2849be18a05b08e1b988d5b69fcaef338996ba
MD5 0ca88c2c13e0b210eaa167e9f9f0e2f7
BLAKE2b-256 2cbcdc83a976eb066d8d5a2a4eddd22e83ec3f0cd4cd3603a306c751b0c5a21c

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 48.6 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 32148a7d7ef645ed4ce1643426446e045d3b167589691f1233ee2e306270f083
MD5 20f5f5b7aaa3a80374f358ef51e97a0f
BLAKE2b-256 6a4d707bf406c94ffcda024ab97876fab035b5bb1d6eb9906c2aae2fe4eebbd9

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 31.8 MB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 39edee2586d32d476496904369f14fb03d95cc3a92e755903de3857cc5e6cec8
MD5 9a17dd7156139264d03d4d8cda8c9118
BLAKE2b-256 9635ba963c784aaaf489bb8a5d99601ac7649ee77dc2c637e273b9de4e389b85

See more details on using hashes here.

File details

Details for the file tensorflow_io-0.37.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io-0.37.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 22.0 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io-0.37.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7407cc7e700d3f50bdbad1fbaa2d41b02f843f9347579299c896dbabc4bc5a5b
MD5 a48cb10bd86e17c9bd60c2e95e12cce9
BLAKE2b-256 ccb8b12394b039ad1aa6ad5883905c14eec3cb0cb870150ec9b84472de5af066

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page