Skip to main content

Tensorflow Recommenders, a TensorFlow library for recommender systems.

Project description

TensorFlow Recommenders

TensorFlow Recommenders

TensorFlow Recommenders is a library for building recommender system models using TensorFlow.

It helps with the full workflow of building a recommender system: data preparation, model formulation, training, evaluation, and deployment.

It's built on Keras and aims to have a gentle learning curve while still giving you the flexibility to build complex models.

Installation

Make sure you have TensorFlow 2.x installed, and install from pip:

pip install tensorflow-recommenders

Documentation

Have a look at our tutorials and API reference.

Quick start

Building a factorization model for the Movielens 100K dataset is very simple (Colab):

import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

# Ratings data.
ratings = tfds.load('movie_lens/100k-ratings', split="train")
# Features of all the available movies.
movies = tfds.load('movie_lens/100k-movies', split="train")

# Select the basic features.
ratings = ratings.map(lambda x: {
    "movie_id": tf.strings.to_number(x["movie_id"]),
    "user_id": tf.strings.to_number(x["user_id"])
})
movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"]))

# Build a model.
class Model(tfrs.Model):

  def __init__(self):
    super().__init__()

    # Set up user representation.
    self.user_model = tf.keras.layers.Embedding(
        input_dim=2000, output_dim=64)
    # Set up movie representation.
    self.item_model = tf.keras.layers.Embedding(
        input_dim=2000, output_dim=64)
    # Set up a retrieval task and evaluation metrics over the
    # entire dataset of candidates.
    self.task = tfrs.tasks.Retrieval(
        metrics=tfrs.metrics.FactorizedTopK(
            candidates=movies.batch(128).map(self.item_model)
        )
    )

  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:

    user_embeddings = self.user_model(features["user_id"])
    movie_embeddings = self.item_model(features["movie_id"])

    return self.task(user_embeddings, movie_embeddings)


model = Model()
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))

# Randomly shuffle data and split between train and test.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

# Train.
model.fit(train.batch(4096), epochs=5)

# Evaluate.
model.evaluate(test.batch(4096), return_dict=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorflow-recommenders-0.1.3.tar.gz (18.1 kB view details)

Uploaded Source

Built Distribution

tensorflow_recommenders-0.1.3-py3-none-any.whl (37.9 kB view details)

Uploaded Python 3

File details

Details for the file tensorflow-recommenders-0.1.3.tar.gz.

File metadata

  • Download URL: tensorflow-recommenders-0.1.3.tar.gz
  • Upload date:
  • Size: 18.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.1

File hashes

Hashes for tensorflow-recommenders-0.1.3.tar.gz
Algorithm Hash digest
SHA256 363539f11c138324bf56c82546a40a9480c465182a20af79262142fdcb16f1b4
MD5 315f0b4024408566030ee94b640552d4
BLAKE2b-256 fb2eef571e533cbb17f8f5be18f1529b97de1403ca5708cef126087433f23aa5

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow_recommenders-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: tensorflow_recommenders-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 37.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.1

File hashes

Hashes for tensorflow_recommenders-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e2130aa57c1891d7c201e3f66a11500830f684ea421d077c10e97af11898ebcd
MD5 911ae2d4b4d2a54a271d14f1380ea5c6
BLAKE2b-256 c91592647acb0fdc574acb34e6d3e2656155423e14ec49b653d780891dd1f2e8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page