Skip to main content

TensorFlow is an open source machine learning framework for everyone.

Project description

Python PyPI

TensorFlow is an open source software library for high performance numerical computation. Its flexible architecture allows easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and edge devices.

Originally developed by researchers and engineers from the Google Brain team within Google's AI organization, it comes with strong support for machine learning and deep learning and the flexible numerical computation core is used across many other scientific domains. TensorFlow is licensed under Apache 2.0.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow-2.10.1-cp310-cp310-win_amd64.whl (455.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (578.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorflow-2.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow-2.10.1-cp310-cp310-macosx_10_14_x86_64.whl (241.2 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow-2.10.1-cp39-cp39-win_amd64.whl (455.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (578.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorflow-2.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow-2.10.1-cp39-cp39-macosx_10_14_x86_64.whl (241.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow-2.10.1-cp38-cp38-win_amd64.whl (455.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow-2.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (578.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tensorflow-2.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow-2.10.1-cp38-cp38-macosx_10_14_x86_64.whl (241.2 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow-2.10.1-cp37-cp37m-win_amd64.whl (455.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow-2.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (578.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tensorflow-2.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tensorflow-2.10.1-cp37-cp37m-macosx_10_14_x86_64.whl (241.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow-2.10.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a6049664f9a0d14b0a4a7e6f058be87b2d8c27be826d7dd9a870ff03683fbc0b
MD5 f9d7389ec3f36f72b1318013e65e1688
BLAKE2b-256 ad87f484e0b86687c97d2dfb081e03e948b796561fc8608b409a9366e3b4a663

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20f1d579b849afaea7b10f7693dc43b1d07321d279a016f01e2ddfe971d0d8af
MD5 536687874fe341d9c1022743750c397c
BLAKE2b-256 b2c3668c91cc7074eed672691f130562c0f02d89aebf01f6e14f1741f7fb900b

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd3cab933757eb0c204dc4cf34d031939e33cae8f97a7aaef00a12678129b17f
MD5 56be650e5e16fa97a54bdc2312d0986e
BLAKE2b-256 273550f68ad5c082836045b2b068d095b0ed5bb6fdee4dfcb9af76058df4ed66

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dc3587dfa714be711d2681d5e2fb59037b18e83e692f084db49bce31b6268d15
MD5 bddeeb5b12fc005278e6468d06b3aae8
BLAKE2b-256 738492f4f4c017ef2071412745034a98108106347478c56475c65d275bd2a792

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 153111af1d773033264f8591f5deffece180a1f16935b579f43edd83acb17584
MD5 e95ad721e9dd1827da811c989b600e42
BLAKE2b-256 fe7d9114d4d155b4414578dbb30e4b61a33dee4437d1c303b73445d79891ca54

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab2d33039fc8b340feb3d1f56db2c3d4bb25f059089a42dbe067b879add61815
MD5 93e051413bdda05504c70ded4c64b462
BLAKE2b-256 2b34f36862c35e55ef6b4e11fff608dd9c8b223d119c79e7fb3ba1b8b1f26e96

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d07439c32b579b4c0251b494002e85954b37447286f2e65554f3ad940e496ff
MD5 7fda395ee59c3d156718d577dd92700f
BLAKE2b-256 594d2121c4e72ccf228b8d25ba2dd572688b0d66a809f8d0498fccf48a8d61ec

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 18895381a123de287f94b1f76ceb56e86227a13e414a2928ab470d7c5b6b4c52
MD5 a6f628c1755476c7bbd52d84a1296629
BLAKE2b-256 9d466303996f3e07b8339ce0fa1ba3e72ed2d76b87b4fce94276bad7a7062fab

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5ef5e562e6baa9dc9f58db324668e7991caec546dfd5ed50647c734cd0d2daab
MD5 eeeb4361ff5b946fc485b82a5a8cf7f8
BLAKE2b-256 b861aa5a61279876f14e970b5639824cb05b22a4802c2f154d28baf64e79c140

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ee057aa57957b1a689c181bd406c30cbe152b7893c484fe6a26fcce6750f665
MD5 a4c146a5a5805284c2007e17a9d24f91
BLAKE2b-256 188b35d0eacfc3eb6ef2dec2f76a9011431401d6f95be5ef11b4d1c4c6ba8b27

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b7603cef40bee34cebdfbf264f9ce14c25529356f581f6fb5605f567efd92e07
MD5 9acf11557be36c15b230b6b80a8527e4
BLAKE2b-256 8658c30692fdb3036de2b368a78f12bc9b265b305ec29f2da994e2b6fc7b2047

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f1c11fad08aa24f4838caf0aa1fba694bfaa323168d3e42e58387f5239943b56
MD5 07b63de7a08ce0c95d27e5e7c1762c90
BLAKE2b-256 b346acb0b78783d3409b07f9ffee184c50d8e5f50fd8be8d5025c1a9ac4e863e

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 981b08964e132de71a37b98b6d5ec4204aa51bc9529ecc7fefcd01c33d7e7d53
MD5 85f3add0bcce150117b97bc48c0b821e
BLAKE2b-256 e7282aff2836ece8dd07b1df0e6a43c19a6f1d9df997ee130849fa40bae6e681

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 886180162db50ac7c5f8e2affbeae32588c97d08e49089135c71052392913dca
MD5 365565a4553cd82d468c6db1113ae623
BLAKE2b-256 a2f810b8bdc9578ba783199f228aaa079105fdbe443a7233aa57fa0b7a19453d

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a8f6f1344cab3ef7e6c794b3e252bbedc764c198be645a5b396c3b67b8bc093
MD5 8606b9e135a5043f8cfa3c3838852eaf
BLAKE2b-256 094bf4d2234452dc0ed91ae9670116172e3fbe17154374e9866d21be4e7ec2a2

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow-2.10.1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.10.1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ae77b9fcf826cdb05e8c3c6cfcd0ce10b9adcf2ffe952e159cf6ef182f0f3682
MD5 6139673a46696345608297e09a609bed
BLAKE2b-256 6d5eb104551e9b3e528a416c88281a9f53727876265b53a6dc698128a60ec7da

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page