Skip to main content

GPU-based QTL mapper

Project description

tensorQTL

tensorQTL is a GPU-based QTL mapper, enabling ~200-300 fold faster cis- and trans-QTL mapping compared to CPU-based implementations.

If you use tensorQTL in your research, please cite the following paper: Taylor-Weiner, Aguet, et al., Genome Biol. 20:228, 2019.

Empirical beta-approximated p-values are computed as described in FastQTL (Ongen et al., 2016).

Install

You can install tensorQTL using pip:

pip3 install tensorqtl

or directly from this repository:

$ git clone git@github.com:broadinstitute/tensorqtl.git
$ cd tensorqtl
# set up virtual environment and install
$ virtualenv venv
$ source venv/bin/activate
(venv)$ pip install -r install/requirements.txt .

Requirements

tensorQTL requires an environment configured with a GPU. Instructions for setting up a virtual machine on Google Cloud Platform are provided here.

Input formats

tensorQTL requires three input files: genotypes, phenotypes, and covariates. Phenotypes must be provided in BED format (phenotypes x samples), and covariates as a text file (covariates x samples). Both are in the format used by FastQTL. Genotypes must currently be in PLINK format, and can be converted as follows:

plink2 --make-bed \
    --output-chr chrM \
    --vcf ${plink_prefix_path}.vcf.gz \
    --out ${plink_prefix_path}

Examples

For examples illustrating cis- and trans-QTL mapping, please see tensorqtl_examples.ipynb.

Running tensorQTL from the command line

This section describes how to run tensorQTL from the command line. For a full list of options, run

python3 -m tensorqtl --help

cis-QTL mapping

Phenotype-level summary statistics with empirical p-values:

python3 -m tensorqtl ${plink_prefix_path} ${expression_bed} ${prefix} \
    --covariates ${covariates_file} \
    --mode cis

All variant-phenotype associations:

python3 -m tensorqtl ${plink_prefix_path} ${expression_bed} ${prefix} \
    --covariates ${covariates_file} \
    --mode cis_nominal

This will generate a parquet file for each chromosome. These files can be read using pandas:

import pandas as pd
df = pd.read_parquet(file_name)

Conditionally independent cis-QTL (as described in GTEx Consortium, 2017):

python3 -m tensorqtl ${plink_prefix_path} ${expression_bed} ${prefix} \
    --covariates ${covariates_file} \
    --cis_output ${cis_output_file} \
    --mode cis_independent

trans-QTL mapping

python3 -m tensorqtl ${plink_prefix_path} ${expression_bed} ${prefix} \
    --covariates ${covariates_file} \
    --mode trans

For trans-QTL mapping, tensorQTL generates sparse output by default (associations with p-value < 1e-5). cis-associations are filtered out. The output is in parquet format, with four columns: phenotype_id, variant_id, pval, maf.

Running tensorQTL as a Python module

TensorQTL can also be run as a module to more efficiently run multiple analyses:

import pandas as pd
import tensorqtl
from tensorqtl import genotypeio, cis, trans

Loading input files

Load phenotypes and covariates:

phenotype_df, phenotype_pos_df = tensorqtl.read_phenotype_bed(phenotype_bed_file)
covariates_df = pd.read_csv(covariates_file, sep='\t', index_col=0).T  # samples x covariates

Phenotypes must be provided in BED format (for compatibility with FastQTL), with a single header line and the first four columns containing: chr, start, end, phenotype_id. end is assumed to correspond to the TSS (or center of the cis-window). The remaining columns correspond to samples. covariates_file is assumed to be tab-delimited and in the format covariates x samples.

Genotypes can be loaded as follows, where plink_prefix_path is the path to the VCF in PLINK format:

pr = genotypeio.PlinkReader(plink_prefix_path)
# load genotypes and variants into data frames
genotype_df = pr.load_genotypes()
variant_df = pr.bim.set_index('snp')[['chrom', 'pos']]

To save memory when using genotypes for a subset of samples, you can specify the samples as follows (this is not strictly necessary, since tensorQTL will select the relevant samples from genotype_df otherwise):

pr = genotypeio.PlinkReader(plink_prefix_path, select_samples=phenotype_df.columns)

cis-QTL mapping: permutations

cis_df = cis.map_cis(genotype_df, variant_df, phenotype_df, phenotype_pos_df, covariates_df)
tensorqtl.calculate_qvalues(cis_df, qvalue_lambda=0.85)

cis-QTL mapping: summary statistics for all variant-phenotype pairs

cis.map_nominal(genotype_df, variant_df, phenotype_df, phenotype_pos_df,
                covariates_df, prefix, output_dir='.')

cis-QTL mapping: conditionally independent QTLs

This requires the output from the permutations step (map_cis) above.

indep_df = cis.map_independent(genotype_df, variant_df, cis_df,
                               phenotype_df, phenotype_pos_df, covariates_df)

cis-QTL mapping: interactions

Instead of mapping the standard linear model (p ~ g), includes an interaction term (p ~ g + i + gi) and returns full summary statistics for this model. The interaction term is a pd.Series mapping sample ID to interaction value. With the run_eigenmt=True option, eigenMT-adjusted p-values are computed.

cis.map_nominal(genotype_df, variant_df, phenotype_df, phenotype_pos_df, covariates_df, prefix,
                interaction_s=interaction_s, maf_threshold_interaction=0.05,
                group_s=None, run_eigenmt=True, output_dir='.')

Full summary statistics are saved as parquet files for each chromosome, in ${output_dir}/${prefix}.cis_qtl_pairs.${chr}.parquet, and the top association for each phenotype is saved to ${output_dir}/${prefix}.cis_qtl_top_assoc.txt.gz. In these files, the columns b_g, b_g_se, pval_g are the effect size, standard error, and p-value of g in the model, with matching columns for i and gi. In the *.cis_qtl_top_assoc.txt.gz file, tests_emt is the effective number of independent variants in the cis-window estimated with eigenMT, i.e., based on the eigenvalue decomposition of the regularized genotype correlation matrix (Davis et al., AJHG, 2016). pval_emt = pval_gi * tests_emt, and pval_adj_bh are the Benjamini-Hochberg adjusted p-values corresponding to pval_emt.

trans-QTL mapping

trans_df = trans.map_trans(genotype_df, phenotype_df, covariates_df, return_sparse=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorqtl-1.0.5.tar.gz (41.3 kB view details)

Uploaded Source

Built Distribution

tensorqtl-1.0.5-py3-none-any.whl (36.1 kB view details)

Uploaded Python 3

File details

Details for the file tensorqtl-1.0.5.tar.gz.

File metadata

  • Download URL: tensorqtl-1.0.5.tar.gz
  • Upload date:
  • Size: 41.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.21.0 setuptools/53.0.0 requests-toolbelt/0.8.0 tqdm/4.43.0 CPython/3.6.1

File hashes

Hashes for tensorqtl-1.0.5.tar.gz
Algorithm Hash digest
SHA256 e59af60d981618ef7585c35bd125cee38910708d25774c759b55c89505524bd4
MD5 09a5ebf486d14110978553261e09e092
BLAKE2b-256 be27dd49aa44bb9b36419157651ffa32449dd6b800159f430f9f3b8f9ded2e5c

See more details on using hashes here.

File details

Details for the file tensorqtl-1.0.5-py3-none-any.whl.

File metadata

  • Download URL: tensorqtl-1.0.5-py3-none-any.whl
  • Upload date:
  • Size: 36.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.21.0 setuptools/53.0.0 requests-toolbelt/0.8.0 tqdm/4.43.0 CPython/3.6.1

File hashes

Hashes for tensorqtl-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 6a86b75eca1a3ade7bb74e104e820c8cacbfcc0872087b9bcf759229ce298408
MD5 7ec08f1a4590a68ce286056f8ebd02c9
BLAKE2b-256 fbb4c62e4ac921dbcb33e49d735ca7ea7bc4ce995f2efa7b0f696236910e073b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page