Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

Library for reading and writing large multi-dimensional arrays.

License PyPI Build Docs

Documentation and installation instructions are at https://google.github.io/tensorstore.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.28.tar.gz (5.4 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.28-cp310-cp310-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.28-cp310-cp310-macosx_11_0_arm64.whl (7.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.28-cp310-cp310-macosx_10_14_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.28-cp39-cp39-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.28-cp39-cp39-macosx_11_0_arm64.whl (7.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.28-cp39-cp39-macosx_10_14_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorstore-0.1.28-cp38-cp38-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorstore-0.1.28-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.28-cp38-cp38-macosx_11_0_arm64.whl (7.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tensorstore-0.1.28-cp38-cp38-macosx_10_14_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorstore-0.1.28-cp37-cp37m-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorstore-0.1.28-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tensorstore-0.1.28-cp37-cp37m-macosx_10_14_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.28.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.28.tar.gz
  • Upload date:
  • Size: 5.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.15

File hashes

Hashes for tensorstore-0.1.28.tar.gz
Algorithm Hash digest
SHA256 cd8d8185136632c58edcd7cf4c43d301bf8ad61a197c632cb495d7d33b7be04e
MD5 ae401b2fd455e42b577c7ea91f1f5644
BLAKE2b-256 ec124794e38216b4136cae6f87bee763d22698e5c974614b7613b811883865f3

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b6f7e0c7455d9e164e6143714519e7c96cc4166b61ed7d268a8ab84a77e0d593
MD5 266fa36f042e0bcfae0fabf5022f15b5
BLAKE2b-256 916313c3a11ca2e6eab7579710391e51b5c90747d1a61d645b08ac8c703547c8

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee16297a9493ed0d6d1000f216e79d29a0b80e7e97646e8520afd44138165839
MD5 ea1f88f40510cff75c3c9a3466e861a2
BLAKE2b-256 701e8b71b3d1245f859a335fa17deeeb5bcee931a18be0c7fbc6aaed2df36493

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bd8615308ad3e29111238dfdd3aca1f3fb79b55c3dac1c04c96c8a319985addf
MD5 7495463caac3d9ec7e2046634bc4c64b
BLAKE2b-256 4a4f55f34c8f98a7237994e87faf727c833a2d4b2cb1f4fb40175977fef1c85b

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 deb32f1e74ab7b836ecec02a759a558fc57522a8dea0db4f19a01a78e93abab5
MD5 c9df5598e05571f02f50c9e3245a05cc
BLAKE2b-256 a1cb2b357145566a921c6cc56c8eb32f7afd3ab4ce9f7fa93caf73cd399b076e

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f9270586401ee60ff79a4cd54c62ab5b06831d69b561df1fb9ebbeade4d4929c
MD5 b58c78cefcfdd7296055ce332e264793
BLAKE2b-256 898590dbfd311152238cf7da273933bd392593d17f8fea37cafa54f520e1a08b

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c4de09e3fae30f8a9ab7648600c78e109ddd1d14af4280e055439fdd52a6dca9
MD5 9df19202793958eb999f9786bc9d5657
BLAKE2b-256 ff262968459aec6c0dce2319a621bc398055bc5dc76caee79c76eb16b7d56b66

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc82cbb77255fd2f7aa191f1e030f13276bf7272ea1027fcc6900537b30bfbcb
MD5 1d366fb03bd8989ca8fc22ec8bbfc10c
BLAKE2b-256 d1e749d558cc4e82b12beefe528777b9ec257ec11626e4a0068a389ed5de3ace

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d7c86f63a6d4d7a84e3201ba9746ca51015612d375d77b9302eb93e9b88bc7aa
MD5 0a7a3efcb2746f76a4dc913da91d1874
BLAKE2b-256 53dd9050984079ff28d96d8251a254350fd7c857230f9fbd14f3c117b9ab0d8f

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6719eaba4ec2692d890c3c67c389fcae073d40d9e8c27e2dabd27fc9fd745e5c
MD5 5640ce0c8ced525f35a058cc98e27689
BLAKE2b-256 968a4980916074b79fedc1ce8923f5782c008d1c63a4d398367db8b8ac150808

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 818aeb015b249069a686fb20f0c0b71663410ac6411cee88df18b8e05b567cbc
MD5 81ddfd46b044a1f61e7e3dbde278b82a
BLAKE2b-256 7e91ae1863620197613f8cac51aadb1d8fbe934b72f1408cac50450fd0d07f7d

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7948ead0d5a55303ffa97a35659aa56a20c60bd89d9487643f51ac8d2e19b52c
MD5 b32d7e11ce52fa6f86f20588722e5eb7
BLAKE2b-256 50d6249767058aa397fe10ce2bec3b669a600581e1e95225e297dc21ed945b55

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e480da4f95f7c95302c4b3e2a7fc32b8cfe1aa51742d72f84a335e49462a2465
MD5 bc2815c9281b52c62d95c21a8b7fe44f
BLAKE2b-256 0a946b124675b5c254b94a8aa231e9f023a4b1f32cc384498baba7cdfbb788fb

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 197159da3ee97c08d8769fa151ff167328108bf07a13886f688b21f64abfb7d6
MD5 23818b8ef208a8778ae527db68321d23
BLAKE2b-256 0077edeaab4b0ddd6779f4b7a3bc53919c4f1991953b80bfba4f2ce15db88aec

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6bd122a44db81369808c84b7739ad2d8453f89c548c5d61d62f2b1f3331dbe9f
MD5 6bc58c27ec5978bca5b81ed4922df9f1
BLAKE2b-256 e7fe151157516ff3b2ecc1578fe8df8b559eb05e232e7bf7f506e68ec563daea

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.28-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.28-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1c53e1e0e7996b8ba41854135d748c2bc8802b94a79122b56448aeb1f77efd9f
MD5 75c2239f4e62a28f385bfb62a7f221d8
BLAKE2b-256 8060fe677799a58df0a9370ef73e5835b42d89fe5c0eccf66287354d6a75479d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page