Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

Library for reading and writing large multi-dimensional arrays.

License PyPI Build Docs

Documentation and installation instructions are at https://google.github.io/tensorstore.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.30.tar.gz (5.5 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.30-cp311-cp311-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.30-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.30-cp311-cp311-macosx_11_0_arm64.whl (7.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.30-cp311-cp311-macosx_10_14_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.30-cp310-cp310-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.30-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.30-cp310-cp310-macosx_11_0_arm64.whl (7.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.30-cp310-cp310-macosx_10_14_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.30-cp39-cp39-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.30-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.30-cp39-cp39-macosx_11_0_arm64.whl (7.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.30-cp39-cp39-macosx_10_14_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorstore-0.1.30-cp38-cp38-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorstore-0.1.30-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.30-cp38-cp38-macosx_11_0_arm64.whl (7.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tensorstore-0.1.30-cp38-cp38-macosx_10_14_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.30.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.30.tar.gz
  • Upload date:
  • Size: 5.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for tensorstore-0.1.30.tar.gz
Algorithm Hash digest
SHA256 b46612fdddf51267c0ffc88666283c0675e196180572912233af781040533475
MD5 df01e1a5eb8e36d357b086777d5f4339
BLAKE2b-256 b4dfd3bcd59120432c1718490ec8d15c0aa5298af04ce9fa3fcc4c4beb8fbe8b

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bb0f966b98a2be1042b4616a577198a10ff2125e2582ad28e4d84998b3dad283
MD5 f59a23a04561d00518b02761de3de761
BLAKE2b-256 c76926cc699898936d54bd92a098960fb77a4fc86e0c6141bac10829d1b8633c

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f4bd14673ff099a0c8320893c82a43fdbefd1e0c7fc9f7a1311038b8505a190
MD5 92de1555d5ff5362d42e02bc824a1bc1
BLAKE2b-256 a8b09a0133c6e46a00e0564168028752bc59e3562b55848aac4d4c93c28c05f1

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66abae30da1baa966be771b6fb6b070c75bb7a3c68b5e4f556f297152c27a5b3
MD5 c1d74ec4c43c1970824e0da0a4dfe495
BLAKE2b-256 0e33f7e4f334603eb73dc31757214292a72e19435be2fc31ef1b2108402c5749

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0684acb78478635f34e56658554e47428b9f2777544b00bd5585a1a7d0652f89
MD5 f44a1e00084864f09d3423cf88b0987a
BLAKE2b-256 8ce2d486c39b6588b34d21283d38d0b54356de1a878ef9840961ac77515584d6

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 37734cc9ebb9010917aaf42e5df7e1a2044c35fcd3917445b2a750e36755303f
MD5 f5caaa5d98fe1508824dde4fe99fd11b
BLAKE2b-256 3bd23cd1c644412af897845ebc405e2483cd761f1bad0b99fa7876c0d3521ff6

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f5c2ce7dd36015d7fde5702d6955ea6f03e83f8fc39975513464df8d5cef003
MD5 6b629f9ae14eea18d5df52d11fd4e3ea
BLAKE2b-256 149c2954575827ad66bb9e91e932ac7aa48ff55ba99ac8b9f4022147c5099778

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e2f6993895c4023165182f2d45ad0832fb48f9dfa48a4ee8373879b43aa9955
MD5 56c50f0649ec2825e3983783fac05cb3
BLAKE2b-256 7f7d8bfb27c5f98cd4002f434d94e92d504365f563ffeade2044389f1ca23273

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 863be2f82f39c9b14377fc5b62c955773edaf415a2bc8d498cf9efc328860a98
MD5 2229a3e0453e7b2b18a133d689f732d5
BLAKE2b-256 87aca218652aaee1876a0a0e8c8cb4d21c373a244d8110b6d2544944879f4a49

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 595d574de06a5c06574e050f0ea78a710b4d55268dfa92fcfc427f1f046c7824
MD5 0c6382a4e5805e1f389fbbc250a8a883
BLAKE2b-256 e83e4ecc6b3d765cf3e2aef990d743d70fb8b310c82c6d8cacf3e07163d5d3b6

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abcd3ad331f7c025636c3cbcc21a3fff3f4d1725debcab8831e9ea50f2d073a2
MD5 b6eee0857d9b1dc9e1a7f6045c782976
BLAKE2b-256 24f8f4bb05511772657654780c6f83362183f6258dc0f771ae9422622839455b

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c14af7818c5057993e48a41780f69ec86c2ed94c4b3cd21c5e7ab94f7842ff6a
MD5 b6bd52a161d4ff684f0cf12f10bcb7f4
BLAKE2b-256 23c986ca2800e8faa18d4a141d3b1355b336ee09a245e5ef62133fce88078f5c

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 50a098e8f3052ef8f66a6d4cb37bddd801ae3ea69f0dcf150dcaeb6a03b44f2b
MD5 f1e23e04ad9236552dac0548346c17f0
BLAKE2b-256 cfb118f11a4ad3e849115ac7c3c0bc30f1c1b49594475809beac514345b26938

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ecceba9f02feadac4a796b0dd27658e6c5265615beab8763cde4a543653b9f04
MD5 ba062ea54ad2051720e1dbe62f72c564
BLAKE2b-256 56cda1b577dfc80bee36c53a19a51d76b10a36ac0b3bb4cbedc91a71ce678b41

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4453ab3acb43bd74b5cf845359d0452b2b12fffb73fb569548a19f2c114483d8
MD5 84cf2f74456eab7ed111120dccd22b9b
BLAKE2b-256 aa805c295caa86dd57d21c1e3c59264ecb125d1b196f010f6f5fdd3ecb3cf256

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fb1d937bc23f77820d295a49fc12cad6e20ef7c4ceaf99191ca26fddc49459de
MD5 00ef09a79219bfadb7c26b4a137d7fb5
BLAKE2b-256 684c31b0e7e739685d4bc6bc86ffb4efc81b2db837d297c716dbf57a23f4a7b3

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.30-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.30-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ea30292a2263e9619c562b9b5e47b3d3b86498cace1a2ef1f209ec5fdde20bbb
MD5 405204088b73125d17183f4e4728dcf3
BLAKE2b-256 e949a871d7856e256a3ae6f23a9cdd9eb04863354c0835547fe45836ec7bbd92

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page