Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

License PyPI Build Docs

TensorStore is an open-source C++ and Python software library designed for storage and manipulation of large multi-dimensional arrays that:

  • Provides advanced, fully composable indexing operations and virtual views.

  • Provides a uniform API for reading and writing multiple array formats, including zarr and N5.

  • Natively supports multiple storage systems, such as local and network filesystems, Google Cloud Storage, HTTP servers, and in-memory storage.

  • Offers an asynchronous API to enable high-throughput access even to high-latency remote storage.

  • Supports read/writeback caching and transactions, with strong atomicity, isolation, consistency, and durability (ACID) guarantees.

  • Supports safe, efficient access from multiple processes and machines via optimistic concurrency.

Documentation and installation instructions are at https://google.github.io/tensorstore.

Getting Started

To get started using the TensorStore Python API, you can install the tensorstore PyPI package using:

pip install tensorstore

Refer to the tutorials and API documentation, or the announcement on the Google Research Blog for more details.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.32.tar.gz (5.3 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.32-cp311-cp311-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.32-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.32-cp311-cp311-macosx_11_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.32-cp311-cp311-macosx_10_14_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.32-cp310-cp310-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.32-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.32-cp310-cp310-macosx_11_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.32-cp310-cp310-macosx_10_14_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.32-cp39-cp39-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.32-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.32-cp39-cp39-macosx_11_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.32-cp39-cp39-macosx_10_14_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorstore-0.1.32-cp38-cp38-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorstore-0.1.32-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.32-cp38-cp38-macosx_11_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tensorstore-0.1.32-cp38-cp38-macosx_10_14_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.32.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.32.tar.gz
  • Upload date:
  • Size: 5.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for tensorstore-0.1.32.tar.gz
Algorithm Hash digest
SHA256 497470cc199aa1d115e90be1d0e88208acb84dccae7d1e5a967fad4cd9f144c8
MD5 76e3fea50a919e5bcc38be264d98bfe7
BLAKE2b-256 6ac1c73e7bd96b28a775df56f20ea5fb8ac9a3a93c72cc51304b2a351865563c

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e3b39766c301fffcde3baf1bebe3b573e7c41736bb0b0afb7290cd1ee704390d
MD5 a8e5b401f23a2f5f60325b0541f6f8d0
BLAKE2b-256 4c3ad0f8c8b050b36ce709b776e9923a40121a112d9be498d0b8aca43169998b

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7ca255d3744fb192c98479549dfc6bfbd9fb1fd940e6e935e924b3174a92da1
MD5 37fb1aec6f783a7f4ca1ca5805b2232e
BLAKE2b-256 47f7ceb57a7b685a0663729e19ce795310dccf6ed703e5271ccd550e48480936

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 381f5d9e734944b7f36f83a7d72c3557d90c0e868f404d512cb261dac46eb8ba
MD5 47e85b7c677887eb5bace6da348f67fa
BLAKE2b-256 c5f7a1706092a0ea52f9c37addbc7161c6c2e1d0b54c438036250134fad80d5b

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 30f6d7cf32e8f1e4a4a5ae9d9f4f68c12d7811a9bdc427ed24a51f5e2f330ea1
MD5 781fbd50b6fa8f448f3644b4eb727f8a
BLAKE2b-256 e5237943f63c16b8653a3d0dbdf2a50cd4cea5bb928631740b80e4a9fd1593c3

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 755256ea7785e00ada3d6100030f2e5143e11912b9ab51f33d65df6ba21f1232
MD5 88f5d761681050396ec4cdbb0d45db52
BLAKE2b-256 10b8f43cd270b2213b6d6cfabfee160b50885adad0ba09ecffeadb097b2f3118

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12ab0fd459ac3c0111aa89ef658a4ccebb6505c1eff22ed843f23a1540191eba
MD5 d6f69573645b16cfa7b1d5c4cadf7f9a
BLAKE2b-256 414dae83a4a95f0e0c91604754617f403b76b097bd48e5d234924376ffc93371

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 60cc5b88e2d0fa87c7a27904463d918d742c6c87deced88b0240f489d16ba7cd
MD5 d4fb9d0687716b90517e0069cb919169
BLAKE2b-256 002698604f7ee26b85aabe0c35a37271d7f437cc6b7292c437fa729a3ad4348d

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4cb9a1a8339ee03ed30102c111f46d459f16f4a4cb93afd98ddce7f383fa6424
MD5 494ab3ebb0f4cd540dbdf501dab6d4e8
BLAKE2b-256 82d2f7d31f9f5f32dba1c41b4dd2e045c1d9f1377379e2220f3027a15a7f972a

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2d2ab87572311d27ca0292e15bc050ae5d8f8000d1bc6094019403fbfc561760
MD5 c75dfd49fa31e88dc55194b5bd814744
BLAKE2b-256 9aac925888082d4703cafccb4a66faf925c54cd9b510aad28c579a9ac8cce9eb

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ae42dfc84943531ddecc83a0c3f3b13864a84310299e5551e3ffa6795465bb4
MD5 5dbb71589dc0efdf02860d3cbc37cb49
BLAKE2b-256 50563d6ab49e958136fc70b5662ff47d6f4432c5aac96c26cda295adee13b99d

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9af71995c0fcb16410e1018e134844246af9aedac3b03a52a5ac5be1bd841b74
MD5 c31195a37fd3f9339b226842f077c8f1
BLAKE2b-256 42dee7bd2671a0815d796d75762850965598580fabd1f9538701ea690108891e

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 931ec3b116bbc4b45a3e51ceb9c8ab91f0090589dff33fd013b5758697bf6e0a
MD5 154e74d7dce3f64277ba0a5a44937e9c
BLAKE2b-256 c4383566f482e709998f75ce9090b522ce9f5c6ae65a6f5c285592597a26dbf7

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 481d150093548441aa4c33be8e25601c9fdb5ac704cb03c9df384e9fa86d1e5a
MD5 edaf0aaa716e587ace04097d89214362
BLAKE2b-256 a22d18866fc97269f44538e3f3402cbd5851fc47e9c05e2aa5c7b852db36c6f4

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62102c11276b2e2da87b6b5bb7f63fa1f49af2eb76afcfcd0d5514e0f62d7b5d
MD5 b86f567cb7d37ab66143788f4a01ba5d
BLAKE2b-256 bd4880cfdb3e82bd82ea9a8bb61916c0a9b31d88cea078b5212df8e2d29bc628

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3815568bf22634672cf9a54b8577355a9e51f8cc2a3dbb2e3c8e690ea3bd5ea6
MD5 5d8902f4a66ea30efe66d5b846a42bda
BLAKE2b-256 365a7718cede7671ec38dc9de346169b113e91eedfd07dbd1045f258646fb769

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.32-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.32-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 abbae54c91e883ea141a89fe39db4b8fb9f3c313410afc2edd78a5a6dcb346ed
MD5 4fdd1f60cda3b5ebb3e7e628694bda7c
BLAKE2b-256 eb9ba044d99ec9f0a6ee9b741518f9f273fcb96daf873de95afb66e81c4dc502

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page