Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

License PyPI Build Docs

TensorStore is an open-source C++ and Python software library designed for storage and manipulation of large multi-dimensional arrays that:

  • Provides advanced, fully composable indexing operations and virtual views.

  • Provides a uniform API for reading and writing multiple array formats, including zarr and N5.

  • Natively supports multiple storage systems, such as local and network filesystems, Google Cloud Storage, HTTP servers, and in-memory storage.

  • Offers an asynchronous API to enable high-throughput access even to high-latency remote storage.

  • Supports read/writeback caching and transactions, with strong atomicity, isolation, consistency, and durability (ACID) guarantees.

  • Supports safe, efficient access from multiple processes and machines via optimistic concurrency.

Documentation and installation instructions are at https://google.github.io/tensorstore.

Getting Started

To get started using the TensorStore Python API, you can install the tensorstore PyPI package using:

pip install tensorstore

Refer to the tutorials and API documentation, or the announcement on the Google Research Blog for more details.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.35.tar.gz (5.5 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.35-cp311-cp311-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.35-cp311-cp311-macosx_11_0_arm64.whl (9.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.35-cp311-cp311-macosx_10_14_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.35-cp310-cp310-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.35-cp310-cp310-macosx_11_0_arm64.whl (9.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.35-cp310-cp310-macosx_10_14_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.35-cp39-cp39-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.35-cp39-cp39-macosx_11_0_arm64.whl (9.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.35-cp39-cp39-macosx_10_14_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorstore-0.1.35-cp38-cp38-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorstore-0.1.35-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.35-cp38-cp38-macosx_11_0_arm64.whl (9.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tensorstore-0.1.35-cp38-cp38-macosx_10_14_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.35.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.35.tar.gz
  • Upload date:
  • Size: 5.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for tensorstore-0.1.35.tar.gz
Algorithm Hash digest
SHA256 93db16e2f448cad716628640d3b73b87d9b259ae8ba1741a82108aef14e427c6
MD5 a0c7634df9f9f5907266c95900d0f59b
BLAKE2b-256 343055fbcec8c9d627547e5eef5f3ab236fe43cdffb21a723bc06916fe6a2579

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 216bf4c00ec4aabf699d2a54ee9311f2fb19a2a3a904d7abb2194572af2f8384
MD5 8e37363e7032b0721d3511424a7f1ca3
BLAKE2b-256 7bb630fdeb673e9fa7b9b86c1fe34ce5534fb321e623134da4fee71b78e30732

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f34fc72a9ceff1c1666b6c85cc86858adbd10ff1c3c6b98c7788bbea9161a6a6
MD5 220da4e5d77d8553b21f46f54a40888f
BLAKE2b-256 6ce0dfb7ed3171c06113cbc6495c27b6a956681550943f66c48fa1d57899f9fe

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d2fc9d8e5aaa54c538434592eaf88f7dfa6773fb35a960cc4cbe20bef55092d7
MD5 555ef63a8e7e70ac3b54c713a7c6ae46
BLAKE2b-256 76da27a471e2423fd9da515df0a78bafad7bbcb60d8c025c4d6d7411fa370e36

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7173f451c1b970230f57b0cdefdd692940ee457d4982a696d00aba163a7fee9a
MD5 278ed272fc1b6a27e24abb9f1f9a0f88
BLAKE2b-256 342b1ec1d32555f06a8add31cfd50aa93fea7432acce4d654b49338ff2f8f941

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a0318ea4afd4f2c00ce2dd4b540acb31c45a260bda94ae7e4340a1a4d28c6848
MD5 5d1d6ddd789b616a07d629af0b9f07f0
BLAKE2b-256 12981ba1bd17d7febb0b224e2d207eeb0e9caf88d1d7a649f66f5ef68325e24e

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51a8578518362daee85e39162bf870faf5545868cd53fe99ede0eda1fad288f6
MD5 7538702fbfd1206e90fef7cf98beb2a1
BLAKE2b-256 cb9a81e33b17f232f876c9137002f97d16d6909c79f95968e3b3ebb79649c664

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 285cfc4816bb0cc305cddc11f25f81a14bd84af0c8bbd39e42c81413c0bf242e
MD5 3cb367e953fae15619133e37e332eaad
BLAKE2b-256 5fabe55b776a8e668bf9183fab8f13e4c1e93830c6a21ec82691de06367b6e46

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4e1b4210b777c4a585a183bdd435bfa8aa5628c46075cb64adcd9b4bdd124e35
MD5 6d6d3ad1ac0eb337dfc57123f66ec712
BLAKE2b-256 4615a87d947b7b90aa71d58e9fd8eaaabaec474f1bb443f9b94c954827f9ab89

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 04c383af4a17e238fffdda7abc06b66c8583554d523cd721f2011bbb7a715327
MD5 91ebcd286b73f1dd6ca3b3fe37e69e46
BLAKE2b-256 e2fd5517fc7df740867ef838cc68e895dd32e738a56a96a4c02e2591f027b85a

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f8011a556b4cbbc547e9365cf833ce7a5fb9fdbaa3f86a92665b78a78b78131
MD5 ff41cceff32a4dcdcfefcf4efce7ee73
BLAKE2b-256 3830c7a8f87f7a9941e9d4c265eb51190fad25783cf857f78d32312b0de37beb

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d742468c6aec6a1dcf3ec164694c9827eb498b2c701b8020fb4a56446f9bbc1a
MD5 695f25d9d9b60cff56c0ada960bb7259
BLAKE2b-256 4ead55c709bac3735dedbb2f442823492e392f79d0431057e0570afd304cb9cf

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9acf9e9a7b3117881ec11f26930d0fee89cce6bb3d81056c15317f7cf2c0c1e1
MD5 7f88e761820fbb0cdec64c364ecfb5a5
BLAKE2b-256 e2cacd0362dd439c8893b0c641e76d79c23e6671317a879f7b94d5f33f6ccd78

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 99ad4e577249c2dfb07a501d78a31e29d6b9e53752384d58782ad53e6014ac41
MD5 2a7c1a2939d7f929a04addc1d1968a6d
BLAKE2b-256 0e47a7227025d867aad8ee1feba4fcbf76a082a1ce1e2e72d7ed07f5b27acc43

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd1406fd325517331887b0b2533e27e17e549196418eb087730bafa6fffaa236
MD5 567ef195104e1d3b95b35cef753a35d4
BLAKE2b-256 eedbef99541a5e20c1fe25da1e5f47db36bf86cc7a9fdabd850238f591ad0e60

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c9d0ea7888a88e5d892894ddf14f76d37665d0adbc2d861c559d0d6d5eaac20d
MD5 99f8f17005e7f02716332afe86f8aa67
BLAKE2b-256 83d73c477bc83eb40490621dc604b235da2a0cc72fd5f73079e87d325a178054

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.35-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.35-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 932f96d35ebdf0e4650bd9cd089319e9c5723d2aaf3f65123a821fc3b04ca4ac
MD5 6a0f094e51d88a2cb0ca5f38a6c164e6
BLAKE2b-256 4fcc683934cf8f7634c72f6096ed92fdee8e01dcc925f73f89f64f9fbf7fc6de

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page