Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

License PyPI Build Docs

TensorStore is an open-source C++ and Python software library designed for storage and manipulation of large multi-dimensional arrays that:

  • Provides advanced, fully composable indexing operations and virtual views.

  • Provides a uniform API for reading and writing multiple array formats, including zarr and N5.

  • Natively supports multiple storage systems, such as local and network filesystems, Google Cloud Storage, HTTP servers, and in-memory storage.

  • Offers an asynchronous API to enable high-throughput access even to high-latency remote storage.

  • Supports read/writeback caching and transactions, with strong atomicity, isolation, consistency, and durability (ACID) guarantees.

  • Supports safe, efficient access from multiple processes and machines via optimistic concurrency.

Documentation and installation instructions are at https://google.github.io/tensorstore.

Getting Started

To get started using the TensorStore Python API, you can install the tensorstore PyPI package using:

pip install tensorstore

Refer to the tutorials and API documentation, or the announcement on the Google Research Blog for more details.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.36.tar.gz (5.5 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.36-cp311-cp311-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.36-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.36-cp311-cp311-macosx_11_0_arm64.whl (10.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.36-cp311-cp311-macosx_10_14_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.36-cp310-cp310-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.36-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.36-cp310-cp310-macosx_11_0_arm64.whl (10.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.36-cp310-cp310-macosx_10_14_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.36-cp39-cp39-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.36-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.36-cp39-cp39-macosx_11_0_arm64.whl (10.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.36-cp39-cp39-macosx_10_14_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorstore-0.1.36-cp38-cp38-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorstore-0.1.36-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.36-cp38-cp38-macosx_11_0_arm64.whl (10.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tensorstore-0.1.36-cp38-cp38-macosx_10_14_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.36.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.36.tar.gz
  • Upload date:
  • Size: 5.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for tensorstore-0.1.36.tar.gz
Algorithm Hash digest
SHA256 733b629a65f1d47cc1b19fb1df2de75111ae228081655746d335ed3c21902bbd
MD5 9138b4a47533e75352e9686ae5589c0e
BLAKE2b-256 2ff21c67dac67a9dfeefcb677715fa0237fd5851d888e3a714e16487b6ede156

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 296156ad263035b24273895ff222373dd58f0277c5cab6dc30b5d0d8a9abf3fb
MD5 d0a6b9e63aead52139816febbda1fbab
BLAKE2b-256 f6f3910d6ab68287538009b27c895526a9342c2c455ad6ebe6129b4d6576a6fd

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4b2b3b828e4af23296dbe88c2c66d57bcc40d92c7437687347693c73095f11d
MD5 6423f2a7627e1f87edd2aaeb819eacf8
BLAKE2b-256 77b987892bdebac7a41803a3ab719f8dbbd5572f977d7c949b45279c5f055bb5

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 90688379adbacb376ea8071e96c5a492db06beb45244a593f706525debeaf00f
MD5 032f4da5228de174559605ac6c2f013b
BLAKE2b-256 8ffa47cc2de7e866e5c2d71655397ef7d0cd3023f8c37d878500a8a9fbf197b9

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8a95aa206e8fb6b266744418dd859a19653e8e0d2e3d336f783a667ff1093678
MD5 e7cd0a52a3e874f2468ada9e4c3930e8
BLAKE2b-256 5b7a80baf62b25d782c2c21d1449486e3216665364faaca42cf44db3ae686406

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e9bc007812ca44bc8156fb1a4511206f68763f350157befd0ce1e9c263af08d1
MD5 04a2e31eb7601d9cc28a4e2597dfdd3a
BLAKE2b-256 1e3e21350b49072c99be7e20db5a17067cc187a9864195bf8d8d67331c7996ff

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33ad5669e5f3ee705718978f5519d96b25ff43f607730ac473947b0bac4c66d9
MD5 dc0f1cfd86078888bf79ef8566a6cb71
BLAKE2b-256 c73fb4111533dd737e6fa22a19d15ca00c7d11a85cc50cbcdba602d86d589fee

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 25cc8e2c865b7193d68524752d14a39bce39e6797eeda47ce02062dc97c9b865
MD5 23e98a4cb11000149e4ede854f5bec00
BLAKE2b-256 92806909882a474af8d501df5f49e85d09e9df92dc8e879e18281ddd41a90f63

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b1e3038778fd47ca351442276ff419bd3fb2e1e7c5c6c9956b341de81f869df1
MD5 ad1f56d75ba89eae74076da491e2f978
BLAKE2b-256 a218ff7c7b5b02e95809c7becaff7bb5429e982113b33ea025034b7d63c8c020

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 acc46ed5e59faee6823ad39b807daeb40447fac2068163b7c558cc3a0d7a0b71
MD5 f6d97080b6679e6e52c5391834bff163
BLAKE2b-256 e6c0b5ec1c5da152b5cadf398d938f193fb101143f7e4e9b4a3facc1b0842ee3

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d50b27919cde623e3918fe6ba054f41e2da5d7dbf7817d46d43131b50bcc9df4
MD5 4ffb9255c083b713de5ac0183a288889
BLAKE2b-256 0c7eec209ed096cc55b10e4d25a84f6683b8916d4808fa0f92881e24de5a30bb

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 96aa9e50f492ed848e73d5a24d187ec679ec4b4f5ebe360e1938c46ccc6a3ff6
MD5 8d8b643a711d8170532087fcd5f041bc
BLAKE2b-256 8268f3a1b2c7675bd83986377f60addb65c1a1db13525001886396efd3673abe

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 634e6fae8019c741199d512ce34077b24e84791e5f6b8e46a6e76aa5aef97c2f
MD5 f9d746886e053cc98dbe34cde36f8795
BLAKE2b-256 7f87ee64e374e9dc2bc027069e6db810ade0152369f6a95f415bc503dfbbb877

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 798c6b66019647231fead25b39e95caa08fa270d22226117d6738b3f2d68372f
MD5 3a0b62c61396025e1e2dec8ed8122479
BLAKE2b-256 2a678077103302155ff41f4091ce567e427a96d2c8bc0fbc4a87374059c1582b

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c351605e18298541aef6662edc9acb6f567ab8b4e548e4d4788e075aceec7d5d
MD5 3b19e1a2224b6c9e76ce3a072b2f8b1f
BLAKE2b-256 a557bc8baf5ed3c83602c3f832fd3a4472988e96f07f6e31b24bdc71dc5a1d9f

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 de48cd37f266a9f1a1b10bba39d47f58e6d7fe04bb2a01329516c2daf0626c71
MD5 e82da3d1d5eaecc3a0681c430742f644
BLAKE2b-256 3bc236e8ddfe2546469dabf2e7843e6a375e98ab173c77d5e11b5aaef9bd1ca9

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.36-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.36-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2461a028fc6542b6342aa6a25119cdbbffe6194da359ecdd6e585b04d14fd269
MD5 b3d5c6a1b22c81693f2182d34926c2b8
BLAKE2b-256 10c0cd272dd07835b08129679ce97c4889e4fce4dff4230f31f44b9cbb48665d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page