Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

License PyPI Build Docs

TensorStore is an open-source C++ and Python software library designed for storage and manipulation of large multi-dimensional arrays that:

  • Provides advanced, fully composable indexing operations and virtual views.

  • Provides a uniform API for reading and writing multiple array formats, including zarr and N5.

  • Natively supports multiple storage systems, such as local and network filesystems, Google Cloud Storage, HTTP servers, and in-memory storage.

  • Offers an asynchronous API to enable high-throughput access even to high-latency remote storage.

  • Supports read/writeback caching and transactions, with strong atomicity, isolation, consistency, and durability (ACID) guarantees.

  • Supports safe, efficient access from multiple processes and machines via optimistic concurrency.

Documentation and installation instructions are at https://google.github.io/tensorstore.

Getting Started

To get started using the TensorStore Python API, you can install the tensorstore PyPI package using:

pip install tensorstore

Refer to the tutorials and API documentation, or the announcement on the Google Research Blog for more details.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.37.tar.gz (5.6 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.37-cp311-cp311-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.37-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.37-cp311-cp311-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.37-cp311-cp311-macosx_10_14_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.37-cp310-cp310-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.37-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.37-cp310-cp310-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.37-cp310-cp310-macosx_10_14_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.37-cp39-cp39-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.37-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.37-cp39-cp39-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.37-cp39-cp39-macosx_10_14_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorstore-0.1.37-cp38-cp38-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorstore-0.1.37-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.37-cp38-cp38-macosx_11_0_arm64.whl (10.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tensorstore-0.1.37-cp38-cp38-macosx_10_14_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.37.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.37.tar.gz
  • Upload date:
  • Size: 5.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for tensorstore-0.1.37.tar.gz
Algorithm Hash digest
SHA256 70e8ba35da96cf45c1298140881df3d1532fe7ec01091bb64eb944085d0406ee
MD5 9557c92cdfb5f2bd33b4cdc37d9a0044
BLAKE2b-256 93312f07cb14c0ce29280e980db84a1409a15913919d2b1a30c328ff3be33790

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6c07ce5e35573fd48d3817d83d175ab2e86befcc5f362625248ef55439c46f7f
MD5 4ccc110912890bad5d895b283b93684e
BLAKE2b-256 cd24c8fd9b93f9cff69291d21b84bcd8693c241c993e399c15f6c1cebdc718c2

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 600bb9308879ea5a685f55000b4a94ed905d6b220e11b5c29e2677948d90f88c
MD5 8a6a45317e3340ad3cc19db9308638d4
BLAKE2b-256 66816088c93eeb245b0555abe4d06a9d2942e3c2dcf1f7315b449634794ac143

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1f7ca50a525348b40fc096fe4bdde05d0e0eff171481152717ea772da013eaa2
MD5 6b4c82013a5da889c977193e6a933025
BLAKE2b-256 6f46496c48f26db4c1e57fcbd7d3b8a9a2e7d1a67a2e27a9ebff5cf954563a1c

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6d71331a2e2bf70dae4ed383deb6a829d9117574effdb3e7f234d534bf81aced
MD5 ea2b06dcc8c1e562ccb2f1c3679bd240
BLAKE2b-256 1516e5adfc72955b0037a84b4bc14f385718238d77608fe778cddc6cdcbf6eb9

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2423757f2cc971e112e6304de6547b8ca3f3cb0097d45ae5ff2d801a3273315c
MD5 9cd0380b243d01e209b7c4f1de5ecf63
BLAKE2b-256 4b6674fc909967cada8ea86d1fb266a5028efa9965849c2e4450f65ca277e387

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9223aae59e56816c2550edb9acd2176005743ecf03e8a795a96513b90326c4e2
MD5 9b0c04b835b427cf728cbffe81e201f8
BLAKE2b-256 2c1c123a436136548831f3fd82a87e56f92a75e51d4cc9bd7cbc187bf4e46155

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b3f4945295688213d01b0bd5cd21e053ff507d1c73ec8c58fa94ec8f32a51949
MD5 6ab4916a227639e7e6f775d087c2c0c5
BLAKE2b-256 0259a44a1e2c84b73e9fe8ab3764d3523808b8efb1399e6523a827df6a853fd6

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1f85080130df1afd25e24f11fc4fa58a6c5dbd36a45085e1292e347031304d8d
MD5 cf09f70fb7543f46cb1b1a4f22056c45
BLAKE2b-256 8b0b8572a6e6d076b8e8501bf4dd5d9eb71c8567ba53fa57897bada32bceab82

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4d24c017fd30e00f470e88c59a57feb8488adb8fb153d94072e2a5a55d6b1bdc
MD5 9e3079e9ecf8443e7d76207095402d89
BLAKE2b-256 d73352d2541b57d08867ddbf3cc87d05d5029d29dee2bc8323a4bc40296e7299

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88fff1e82bbd59d1061b770b58ed7e00f100e6c89ff3ee5d63ecb12fa8d59d04
MD5 ac2c13c031aff923e1bac4c06d79a2b9
BLAKE2b-256 edb24b9524b9be1bf4c15017abbbab9b4a0d7ee1cbbf075793e213143406ad43

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c0faabf46820f363f8d5087cb022fa66999cc6757ffe1b056d34ae6b1aba7d72
MD5 cabb1a62d6d4f340a37ae798f0ed4a5e
BLAKE2b-256 1966b6b9665fb6d6971c831f513d31b9e503bc97ab952218134955472027fc11

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 feb57378a907dab83730fa8ecc634b1d872a07f3c85ff1fb68f6ff5e885a1e4e
MD5 06fb289105e03096a2fc2ff1fced1c19
BLAKE2b-256 613ce06879744b89078dbec729690073cc4d25a319ef6eef963e7c2df1e90f52

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9528d151ce9ac36e44d412a12c8c20c636bc1e0509c69fbe6e3ae85e176f3a56
MD5 c44ff7e4b2d69abd8ede0b9533680d51
BLAKE2b-256 643c54072e9eac0e5fc60cdd21edef7b6379c1501485011361d4f148ac3ade18

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e9039a6a63733c1a65d3f1b38e2fb39b37de9db4e4e1d4ef18caba36628f9639
MD5 5ef63ee6d2f321a0d6fe28f8a07d1af2
BLAKE2b-256 7fd4d55a0e489ffcdcefa0ac0f0fdf6e5f8644d8234aa0974c78fe44cf208c1f

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f7aeabaf59ca16eb675a319c60ea9ca8afde6c5ab5021a99fe64bb1b7bc448cd
MD5 1c2dd05cc5b76ca58eefba2c725a22e4
BLAKE2b-256 1b9c9529d35822983a4a3765d2eab8bc91a9733cfdc03cef217652c2f6c806b8

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.37-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.37-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 61ba1d74af0e7086f383217aaab3f4830efcf1351048d3211eb0498b920ae28e
MD5 7f9f87da4df340f9f4aa75185b13d9c1
BLAKE2b-256 9e68125f473dde733172cb80fd54f49ae4f7cf7f1a10a64b241835a9a9cbc1b7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page