Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

License PyPI Build Docs

TensorStore is an open-source C++ and Python software library designed for storage and manipulation of large multi-dimensional arrays that:

  • Provides advanced, fully composable indexing operations and virtual views.

  • Provides a uniform API for reading and writing multiple array formats, including zarr and N5.

  • Natively supports multiple storage systems, such as local and network filesystems, Google Cloud Storage, HTTP servers, and in-memory storage.

  • Offers an asynchronous API to enable high-throughput access even to high-latency remote storage.

  • Supports read/writeback caching and transactions, with strong atomicity, isolation, consistency, and durability (ACID) guarantees.

  • Supports safe, efficient access from multiple processes and machines via optimistic concurrency.

Documentation and installation instructions are at https://google.github.io/tensorstore.

Getting Started

To get started using the TensorStore Python API, you can install the tensorstore PyPI package using:

pip install tensorstore

Refer to the tutorials and API documentation, or the announcement on the Google Research Blog for more details.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.38.tar.gz (5.7 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.38-cp311-cp311-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.38-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.38-cp311-cp311-macosx_11_0_arm64.whl (11.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.38-cp311-cp311-macosx_10_14_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.38-cp310-cp310-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.38-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.38-cp310-cp310-macosx_11_0_arm64.whl (11.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.38-cp310-cp310-macosx_10_14_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.38-cp39-cp39-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.38-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.38-cp39-cp39-macosx_11_0_arm64.whl (11.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.38-cp39-cp39-macosx_10_14_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorstore-0.1.38-cp38-cp38-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorstore-0.1.38-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.38-cp38-cp38-macosx_11_0_arm64.whl (11.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tensorstore-0.1.38-cp38-cp38-macosx_10_14_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.38.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.38.tar.gz
  • Upload date:
  • Size: 5.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.17

File hashes

Hashes for tensorstore-0.1.38.tar.gz
Algorithm Hash digest
SHA256 61400782073a190d7be51c5cf39819b9974a9ad607c830d393ed796a9814fd27
MD5 66354110a150c64a2b2287302130e3dc
BLAKE2b-256 ec2f9ab1d5bb1842812befc4bce825794555fd574a6512876d423e38b1eec077

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5266f624d83bc3d17d4bd2852fcad3020b7b89897457f335901b6f38ce89161a
MD5 abc7fd3e23b9e17b6a6f79f9599f3620
BLAKE2b-256 90c1afa521a7f6899a50672c7e212ba6df97a601849f3d0c8ecac5dbe847e80d

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 662e179da48b2a0d2df9a14f14ccd1e57ef4f66bfef87daa099e80bacfb8a301
MD5 0c57c03c01a8d4217bcd3fbb7c468b7b
BLAKE2b-256 c8859dc18cb6d4893bdeb3cce714e47f0f0e961d836034dc40654b71ee7766f9

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a807c563b58d08f70dae567890f2bdfeb66d8ae9b5dc5cad716e9ab04751f790
MD5 2a7f8a6b16c4de8a8ee1b245c3634059
BLAKE2b-256 e3ada6a6f1b9759355b714a82a9849c190ff015cd7aaec069606509ed82e76c0

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 efb0f1b106de3e19422c01d85d2806fed9b3babd22f0f61c8170e24c40e42902
MD5 b8e46c5b0cc3521d5bab7b119eda89a0
BLAKE2b-256 b109bfbef37c1c38f45dfc9eff7bb244b16e1b566ada783bd50cd8c7c148bf26

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 93cfcc8691e4ed02cf1f1c1b36568af0c08b96b59a33de8a8e9feb454dc6ad2a
MD5 5622e31d3c3c53dbb56a98f48124e3a3
BLAKE2b-256 f1058024565fc78e5bbf9a1bcb43e03ec60c1a3d643908c73606a194435e5b10

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7250b68696ddaa228355d6dd581052d8cf3a8b86b080cd9f909f57c711d44e52
MD5 67a27950be9089e88a1ea9084705a2ca
BLAKE2b-256 d3fc828a3ac58a77d4b1c6ab68551a768ff3dd458fe4db0eb84219b66c40498f

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 44c627148f6537fcad523b41c6e41f4aa47313f9e229a32c3a4e6ed939b4f151
MD5 22e9fbaaa2908e7ccf3fd8123859d245
BLAKE2b-256 386ce53cb92726147f0ead159c09e973b0f4142e2c8caec6a8dc93ca7bfb5e88

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e574d1640c88e9fbf1e377e3618046c6e0400f1c59569c683095660a6d4f0963
MD5 60396978d81d82c06dd86aa2b8ecedb9
BLAKE2b-256 ea9260e267a0697562ab5b2f0bd72e614b6eb1ef7697f2358b740937148f7e75

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 52d464df06cba456d27cd4b3b375efdb014e69afb2c0d395b1f382536eea1b9c
MD5 cb27bbc8400e5da642129237e70a814f
BLAKE2b-256 5750cb6400ab2f40207f417061b04408c9f0b6bb597ab56c5361b728e2ee0a2f

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4b07fa37bbc4cf2ba3befc91abe92be096bba30b1b3eb4f0c3d825aea7cec97
MD5 1f9e1f6083e0647e6a7949c20d4d437e
BLAKE2b-256 5d29c96b9d40ba177d8567b74a16b258fe01729f2d7310ebc76dd1703338ae8f

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e2c23a5e97b2488e829b91ef6d14e52272cc6ad233dbf1cfa7df352dee0cf2c3
MD5 3463d44ebde6d52d49be6e2e94298170
BLAKE2b-256 b39555214f3ec571a4e8eaec848e935d0df57842047aef9bdfaa6863274ea951

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0131b0d4f3d0531a042963c70100248de46fc43d011e711be9632e87cbc28ba7
MD5 9b7eb25c95931cd2bf88887b49aeef24
BLAKE2b-256 2567a707b7f6abbeed688c7e76b00b60a29a61570b84d27536dbad94de1b6baa

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 061cd9397f2ba7a003c3af7c20e1e3e75480b92f7418f5edca684df81f91d943
MD5 c746cf2610bf75adb8d7b648ed743bbd
BLAKE2b-256 6abbd47327ba31cf9c43f5d3f0cf6609ecfa23480a2e5a76e9b342d44fa526a4

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 671354acc5de2980e050aa410d053860ee801c5076848c07f05a8bed3d48ed44
MD5 c2924846d52eb550358dbf6803b62740
BLAKE2b-256 a3b3c872d2504d60d9bb8d3ee3f46a9fd3db3b5296a9b37e4b31ed9f0093e874

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1217e13fd76aaaa8b4aba0a9bd8f8ad1b9f3c05903e4c96ea64080fddfa4da12
MD5 87c6c962e3eb4e30724b19f5569259ca
BLAKE2b-256 2d36a6b682f32a372dbbdc5a1d1a5116e4631b139a3891da3561ebd2b9d70238

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.38-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.38-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 be132682e6b9bd9c43b8579ad45eda04184dfdd319ebc5c95e2b1798d62e9b5f
MD5 c999ac8e22a4e95ea674449339b83386
BLAKE2b-256 4f4351c6861696035fbd090dc9a6b0fb58010f955fba80535d7eeb922635c584

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page