Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

License PyPI Build Docs

TensorStore is an open-source C++ and Python software library designed for storage and manipulation of large multi-dimensional arrays that:

  • Provides advanced, fully composable indexing operations and virtual views.

  • Provides a uniform API for reading and writing multiple array formats, including zarr and N5.

  • Natively supports multiple storage systems, such as local and network filesystems, Google Cloud Storage, HTTP servers, and in-memory storage.

  • Offers an asynchronous API to enable high-throughput access even to high-latency remote storage.

  • Supports read/writeback caching and transactions, with strong atomicity, isolation, consistency, and durability (ACID) guarantees.

  • Supports safe, efficient access from multiple processes and machines via optimistic concurrency.

Documentation and installation instructions are at https://google.github.io/tensorstore.

Getting Started

To get started using the TensorStore Python API, you can install the tensorstore PyPI package using:

pip install tensorstore

Refer to the tutorials and API documentation, or the announcement on the Google Research Blog for more details.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.39.tar.gz (5.7 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.39-cp311-cp311-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.39-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.39-cp311-cp311-macosx_11_0_arm64.whl (11.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.39-cp311-cp311-macosx_10_14_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.39-cp310-cp310-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.39-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.39-cp310-cp310-macosx_11_0_arm64.whl (11.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.39-cp310-cp310-macosx_10_14_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.39-cp39-cp39-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.39-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.39-cp39-cp39-macosx_11_0_arm64.whl (11.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.39-cp39-cp39-macosx_10_14_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorstore-0.1.39-cp38-cp38-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorstore-0.1.39-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.39-cp38-cp38-macosx_11_0_arm64.whl (11.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tensorstore-0.1.39-cp38-cp38-macosx_10_14_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.39.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.39.tar.gz
  • Upload date:
  • Size: 5.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.17

File hashes

Hashes for tensorstore-0.1.39.tar.gz
Algorithm Hash digest
SHA256 ccee5ebd1ccaeaba4e36186702eae31513813c001d9c84cfd6aadd7821075602
MD5 811c471c54b2dfe0ac8f96df259803d2
BLAKE2b-256 ab44d0c80df9949fca05e9746f608c935b6c84d2d0c6cf820ed8e9ef84d54330

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 65519137cd3ff10dcdf1d7ec1790bac3af0537f724f5fa4bece8ed0f7cd82e62
MD5 0bc78ab35b1460da5193e96f6cf1ac98
BLAKE2b-256 02c1e8454c0519735a8f5bb79f80c2ae83016a362923a9e6ad1bfde47dff5320

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 101ccd2810a697cb27fbb15d2371b20203566a633ee0acce72870140c7008b45
MD5 afa503fbc7f4f0d107f91d26e0c2d6b0
BLAKE2b-256 e5e830be2af5932f4dfc2d17c5bc452d5d8a234ea337a3f92f8adc325e29d63a

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e7f00a0881f38c7bb931dbb9c04083e70a2f65f775e7076b3ede2cd67d234627
MD5 61aa9257b29074e28fdac9b321d97dcf
BLAKE2b-256 1ef036c7c7e7e3b3158a94361a3af715d07619795b83c3fd09ba8b513df5fe05

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ca5db40691aecaccd7bbb10a7731605d74d3296e9df6fab4640ad0129ea6ea2b
MD5 2d33032ea61fab351bf009f6f76b65bf
BLAKE2b-256 463822d08f940a48237b87c7525409ad6a49e65f2e7b78764eb91a12c9d92578

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a779174d581d3ab621544694bb0a4a56caba4c3612c6ef6f49fe8f49f42feb1b
MD5 a4089b2d289f50a262de58ff3e4e3ff5
BLAKE2b-256 46595cfb4ba27bbcbf301f73ff13d5d0965e2a052d98ef9e0eb2d48555fc802c

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1e4d42198956853d606f33d34a3b21fb1b6b0e1bb90db0250935c31a46843b2
MD5 a9c34a478b1a4d35d07fa9583d3ee7a4
BLAKE2b-256 6390ec7701e75b406f299d042c95fca92a17cb78576334c28d3f475b98bac7a4

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0a31d1c714ec0481e43e8273f228bdf370b9b900bdb2d6df73d2000cb7902687
MD5 60954623f7e9856989b5b1464daab6d9
BLAKE2b-256 7687a16717566fd305638a84fa521eeb760178ab8388220f6dead8650511f623

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e6caca06c3a1adfdbf1abe71ce2cf342198ea1e030a8337ed40347a261e1387e
MD5 25922caff62f80beb6b902fe495b16a6
BLAKE2b-256 ba0d1b073dacbc14be7f5453749f32ff1ff300cc812c09c53b7e6cd5111f8942

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 acefa95e8416044787c0be945f99f04e51dee63ac8f8ace521c686870c72f510
MD5 df5a718e10030702e3bf98bee0ca3946
BLAKE2b-256 650bdfd2ef6c88eefb0719c85fdd731c3b6377ab777acb87ffdabcbbfc64ceba

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20e52ab848a11874263c73257f6359be1738a062e73b781af0ea953ccf8ada96
MD5 be757a2d3bae0588afdb820f11d0521c
BLAKE2b-256 0c84cb164b43e54cb28a77665f2ff18d04d7d7deb447fc9564f52dd4e864c9bc

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 51d854600d5e0d5be7748aec03ac010249d5c8c11a1f398d2354dd64891d6e8a
MD5 28adf0cb2e77fdef80f88d0f520c12b3
BLAKE2b-256 28436694d6d710b2e74776a33904c498bd1e046c28b94805e44276b4578bf3f1

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4a9ba6070ab0c576d94262829fddca062294adbf9d6b1a32e48cfa745d018ffe
MD5 b03dd99bbf409e00ab41ace64e2e2d1a
BLAKE2b-256 d314232eda0941135cb8dad694554bb6b7aa862f7cdaca3b84996efd0380bac8

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f12ace080d297905bccb095bbab0c9e5fa5d3427ea41677bac7fa29fef8701df
MD5 d3401c6146e4f1fa9782a5f8ec1f5979
BLAKE2b-256 87388c88c4160ebadcf5e5bc7201a5f5686197ab1f2e15625c09fd49f759bf60

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8f30709b083ca84ae38c84cc156184ff96688532be0e734d07498d26ea8a32a
MD5 84031a79abe6374f2efb547338487fd6
BLAKE2b-256 9b97d7fd4de4510dabc625c8cd72349a26a20eb2598b369a219c7d71f3b02422

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4987dbfd518458ea0dffae9965f004017adcd79facb5ebc98a44e810b37652c3
MD5 5b5e07a630c38cba1e47cc80d747cacb
BLAKE2b-256 6eca9211d868862a103dc0f2f2b944f86f148bc28e2e172529f1a270ccc1a36c

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.39-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.39-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 02780cefe79dec1fdd85c2a3b89f5c4f25e59adf975ab36a26c952819fdcee04
MD5 b4b5925a0ae9b1b846bcfa947c9986ea
BLAKE2b-256 a3bef0b626d0383931e52dc231fe10818a32cb4423b87c0cdb454ad335597000

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page