Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

License PyPI Build Docs

TensorStore is an open-source C++ and Python software library designed for storage and manipulation of large multi-dimensional arrays that:

  • Provides advanced, fully composable indexing operations and virtual views.

  • Provides a uniform API for reading and writing multiple array formats, including zarr and N5.

  • Natively supports multiple storage systems, such as local and network filesystems, Google Cloud Storage, HTTP servers, and in-memory storage.

  • Offers an asynchronous API to enable high-throughput access even to high-latency remote storage.

  • Supports read/writeback caching and transactions, with strong atomicity, isolation, consistency, and durability (ACID) guarantees.

  • Supports safe, efficient access from multiple processes and machines via optimistic concurrency.

Documentation and installation instructions are at https://google.github.io/tensorstore.

Getting Started

To get started using the TensorStore Python API, you can install the tensorstore PyPI package using:

pip install tensorstore

Refer to the tutorials and API documentation, or the announcement on the Google Research Blog for more details.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.43.tar.gz (6.3 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.43-cp311-cp311-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.43-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.43-cp311-cp311-macosx_11_0_arm64.whl (12.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.43-cp311-cp311-macosx_10_14_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.43-cp310-cp310-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.43-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.43-cp310-cp310-macosx_11_0_arm64.whl (12.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.43-cp310-cp310-macosx_10_14_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.43-cp39-cp39-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.43-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.43-cp39-cp39-macosx_11_0_arm64.whl (12.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.43-cp39-cp39-macosx_10_14_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorstore-0.1.43-cp38-cp38-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorstore-0.1.43-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.43-cp38-cp38-macosx_11_0_arm64.whl (12.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tensorstore-0.1.43-cp38-cp38-macosx_10_14_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.43.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.43.tar.gz
  • Upload date:
  • Size: 6.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for tensorstore-0.1.43.tar.gz
Algorithm Hash digest
SHA256 7914eb6f5e53bcf20aa62d8b86df73b85c794a902d3875de4474e80b6ac78168
MD5 6c396b6ccf33f795c91b8eb06fa4b187
BLAKE2b-256 c266d5e49df40fbaabba2149bf4870fc4b6c2f4c79adc9aeeccdb7ad2ab02ac6

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6083f8929bac30067c3eda082402cb0c9565b803a08e61d317109b7394e6634b
MD5 1bceb6ee4de2f4e01179655b7f5d033b
BLAKE2b-256 2551b02714c413084a79bc57c964fccc95176552f0f44c84cc823815e693e806

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6cd6298164c3d9687ad00433af968d6a3ea74da4b48fff47f66e2f9508a23ba5
MD5 19d92989d689f8a753784c4329bcc7e1
BLAKE2b-256 52d2576fe21dda06c5a9d065ac5dafe08142276879a455db008f95e932397331

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 83584f03cb43fe43d081447da00f58a292621ce8e5b583221503a65a96e98cba
MD5 c4d35b33d1252857201310e5d66232b2
BLAKE2b-256 f1e63b09120d557e00edb0613d2a8c808fc4b22f9572373827862b802fcedeca

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1eef2610eb335b180c4786dc24ee3f1027b223cf357b136f48fd42d7b6e5c284
MD5 9957b0380944ec84764a7d8f6fd0322c
BLAKE2b-256 73d9a826445ace49fdb5fb83e9fa721a801dea826ff09295fba532d655d50ad0

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8792485aa377c06d2d6308e96b02b3e671476229f61b554b3d870de6a1a3c645
MD5 ff27748966cd961cb0bc5ffff086dfec
BLAKE2b-256 8e1a89f04838a7cc2c39c57b23d3b7f9d4fee25d844d6528cc2738f968ee190e

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a050110de927e83c89ba67ada0262dfcab197b8868d9c19fe622298b33893c2
MD5 3661c2578754a21fb161f2f3073e08a7
BLAKE2b-256 98ad34a4f522e1216651554c093f7a0e7a86d1243cf82c1459e0ade056d89484

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9e78e1da39bd52505549f9084df09ef06d2011c340c90c169cb68fff0d8b5b0c
MD5 bdaf3dd8b2b91c268645231ad8ec7a9d
BLAKE2b-256 c9b1c9eaea347caa632f13d7afa748da496d3a0117a65cc7fbbf9d3bc829c421

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f00f1f423132bee01b41d8262223ebbe6ed185725b6834f145fe6bd5c6e5fe5f
MD5 4e25da9edf5a73ee67b6b8b04a4e83bb
BLAKE2b-256 b55f680edb0d03d019fdfd40e21dbf155cf9ceebe3f13e3ea59f70527f95edea

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bf5ab3462f33d8dcc6f02a71d23b893f39011c5e0fe4e389b597c8ca8f70d368
MD5 a723ab8df5513c9e5d33c9481bef5be1
BLAKE2b-256 2919be120aee433d0c847bd12a43332418dda99b246c6af7d7fdd12b5944fe96

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 903bad4cc9d39821759ce1f089c7d814385b1669e745a023bf654ce55b506b70
MD5 9526844eb92e8f87ef9fd138d9a23bc3
BLAKE2b-256 87ca285a5d5cc4b32083d257db1ec3869c4885cd20a007c2f2e40fcf82a57049

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a0c6ab30bb467519e4c149a933bf482ff104cb943288b2be07b1e2700f333bcf
MD5 968e61263a379d790ff98e17f6e9f31d
BLAKE2b-256 c287e91aeb8de058769a1117cba94111d3a8c9a39f7bacf3238763273e3905dc

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c839653dc51eacc80c2840c7d89d32631c7996c80a137b85ebf21c6152f300fb
MD5 a742057a6c78b456393d5892d0782631
BLAKE2b-256 60d00bde7d21bff0de2dede55a29e6b323eeea9673fd1009938451ac31d4e5b1

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6cc79049dd085b710fb5364b27c5973dafbc7c8d2e60249c8b90461d2587f24b
MD5 ec24b4522d080da6fabd8bdb99635201
BLAKE2b-256 b902bd77855515cb4916b5861b3cd732444c511c37b87e3b5cd2bbe946704f4a

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e47c9aad8d3f0f09c47b4e1a59d9262d8c20b2fa7a0e7d3cd31cfea50b0a4b7
MD5 b7f545ec9d5dc24144b8aecf091d72e0
BLAKE2b-256 aa1ad08e0963e4eb8925f13d1bb99c7ebae7c41bb81366acdd114102da9cfa9e

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b8d2ab8f0d06aef0db82406b9c3db3763b687ead23a7785ac931327206421e91
MD5 5aa9670552c8ce04d2f9d7c6f1d2d3d2
BLAKE2b-256 2e1b6d551b96c0fe0dd72dc9bfc3f78d72ee80f404efd7a7dd5a1c8720f004f5

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.43-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.43-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 589badbb7a745d8a577ff4fec26bafc65bd2112c31af851259f6e367561ac66e
MD5 69dbdc3558f9338d4cc5a9c44b877b59
BLAKE2b-256 750f3c824a34260190e1ddb94046ab0694e88dbadf993f8eee64f587f18d3cde

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page