Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

License PyPI Build Docs

TensorStore is an open-source C++ and Python software library designed for storage and manipulation of large multi-dimensional arrays that:

  • Provides advanced, fully composable indexing operations and virtual views.

  • Provides a uniform API for reading and writing multiple array formats, including zarr and N5.

  • Natively supports multiple storage systems, such as local and network filesystems, Google Cloud Storage, Amazon S3-compatible object stores, HTTP servers, and in-memory storage.

  • Offers an asynchronous API to enable high-throughput access even to high-latency remote storage.

  • Supports read/writeback caching and transactions, with strong atomicity, isolation, consistency, and durability (ACID) guarantees.

  • Supports safe, efficient access from multiple processes and machines via optimistic concurrency.

Documentation and installation instructions are at https://google.github.io/tensorstore.

Getting Started

To get started using the TensorStore Python API, you can install the tensorstore PyPI package using:

pip install tensorstore

Refer to the tutorials and API documentation, or the announcement on the Google Research Blog for more details.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.49.tar.gz (6.4 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.49-cp311-cp311-win_amd64.whl (10.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.49-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.49-cp311-cp311-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.49-cp311-cp311-macosx_10_14_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.49-cp310-cp310-win_amd64.whl (10.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.49-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.49-cp310-cp310-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.49-cp310-cp310-macosx_10_14_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.49-cp39-cp39-win_amd64.whl (10.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.49-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.49-cp39-cp39-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.49-cp39-cp39-macosx_10_14_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.49.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.49.tar.gz
  • Upload date:
  • Size: 6.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for tensorstore-0.1.49.tar.gz
Algorithm Hash digest
SHA256 b0dc120ca4c4bcbb3ec28d826f56d3995fd47e375908f936662f0f7653859515
MD5 b0182e11a2fa970ef4864caed36efdeb
BLAKE2b-256 9736d0aef0bdc54eeae6d1045fb2655120d32c3a06abd076186c464c3db39bd5

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.49-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.49-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f48d7f2c475874a65c6de874f3c2ba2170a83b7bb6508b1843e142da6f94b006
MD5 9b219b12ab97c25bc7476865431da97d
BLAKE2b-256 9c4358539d83c7ac04a18c9235545bfa52362bb9669ebb2fac0b46eb2259e87b

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.49-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.49-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e35db3125564d95689c008d9580184e0b6ff3d72840213b04c6dcf0e0fb51eae
MD5 0ffd3e2f3dda52eae608538817b63734
BLAKE2b-256 6d9475be745c79bf5bd3e4ef6e82d372896781aa078dd62a320b4baf51652053

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.49-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.49-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3169e590617617b8bd2792f911a664625a77b5f44be9917828b7bf093cba02e4
MD5 51257d301a5871c62c9ceb1b78a36ea7
BLAKE2b-256 5342ba29a0c0b0d16eb4001141ed50d88c47f20ce4c921d586dfba5a787d899c

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.49-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.49-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 069eee901053e0e2092447ad273cde5dea06de01f9c521d4f048406147cc8772
MD5 8a6eef2e4e1965c14d393f8c78fd242a
BLAKE2b-256 dafc85e8d69dc1562e43ca720a9473d15181817950e342d84651bdc6db097b6f

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.49-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.49-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e932eb651a7636f3540a70ff7689c4fe08680298457bd096c7b40060dba1d11d
MD5 d6fe65e935bc45be9944a176532a7587
BLAKE2b-256 e611fde70f76de41f73c7ae62ce2487a5c56b738937a43c1e2baea8ba6a3b2b9

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.49-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.49-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 129e2816f0f8868c77f5c674940d0ab5dc4b46e1311161fa57c4aabeb465fa30
MD5 fd311ea4b0a0253ca540494190116bba
BLAKE2b-256 0589c6c0d9ff4cbb2887280aba2731ec6df62a96ad14ab1563fbb28bd8abed4e

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.49-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.49-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0781bcb7c0298928709a5ca57e7b0c3566f0d10b6628821b18c7dfc8c1ad80c
MD5 a3be00644b3cec34812d45ae8c82ac82
BLAKE2b-256 f2c5380bc541b8cc3909e08fb3ccd1c077ab7a8f3a92ead88ab669f7844de501

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.49-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.49-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 467934cc7676560d7625ad15572ef21db0e97daff3178aa089118a6e43e0c95b
MD5 fea6f571d1f6cdcfcb01dbbac1c5fcbd
BLAKE2b-256 d0fd6bfd954b1dd9cfb9f8e3c002cffafcd492ca06d46708f26fda3435404927

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.49-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.49-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 13acedb1ce9861f01b6969065af3c26caca1d61f248af245cfb0837b45c9734a
MD5 16aabf6d571bf7e1b1cb992e485e0c2d
BLAKE2b-256 61d2d0c9f87bb1f2649b1365b8304df674bc617cfd5ab0e8fe6ce219a1c31f47

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.49-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.49-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38c4a97c1f77f044cae17b934b8ba664997ae47c5cff4746da23621af4d022b7
MD5 ddd7e262e1c96337da2303e82b6d25fc
BLAKE2b-256 adfabefe941a268d6ae132f468ef2bd4cf89aef957e2d6e15f329f24f710fdc3

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.49-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.49-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 60f9576d1f894c3aa7b1aaaa952c2689fe1a556fee3ae1f1a1547507affec1b5
MD5 393481b00a234787de180c0fc9b87c29
BLAKE2b-256 1ec8cee314ff36cf59d59fd69e0d63437452589ea5973ffc92b0ef9bb20adb68

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.49-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.49-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f8649a64e6dcdd11b4766a1a6b164d8c3312a9951b4c0bfd9713333271a82806
MD5 f29e1e74f73ad341d3cad9159fe8bcbc
BLAKE2b-256 c60564716951bb6215cc5ac9d0460e8d69007e667083e08e38c350fb199b34c7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page