Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

License PyPI Build Docs

TensorStore is an open-source C++ and Python software library designed for storage and manipulation of large multi-dimensional arrays that:

  • Provides advanced, fully composable indexing operations and virtual views.

  • Provides a uniform API for reading and writing multiple array formats, including zarr and N5.

  • Natively supports multiple storage systems, such as local and network filesystems, Google Cloud Storage, Amazon S3-compatible object stores, HTTP servers, and in-memory storage.

  • Offers an asynchronous API to enable high-throughput access even to high-latency remote storage.

  • Supports read/writeback caching and transactions, with strong atomicity, isolation, consistency, and durability (ACID) guarantees.

  • Supports safe, efficient access from multiple processes and machines via optimistic concurrency.

Documentation and installation instructions are at https://google.github.io/tensorstore.

Getting Started

To get started using the TensorStore Python API, you can install the tensorstore PyPI package using:

pip install tensorstore

Refer to the tutorials and API documentation, or the announcement on the Google Research Blog for more details.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.50.tar.gz (6.4 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.50-cp312-cp312-win_amd64.whl (10.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

tensorstore-0.1.50-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.50-cp312-cp312-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

tensorstore-0.1.50-cp312-cp312-macosx_10_14_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

tensorstore-0.1.50-cp311-cp311-win_amd64.whl (10.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.50-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.50-cp311-cp311-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.50-cp311-cp311-macosx_10_14_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.50-cp310-cp310-win_amd64.whl (10.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.50-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.50-cp310-cp310-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.50-cp310-cp310-macosx_10_14_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.50-cp39-cp39-win_amd64.whl (10.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.50-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.50-cp39-cp39-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.50-cp39-cp39-macosx_10_14_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.50.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.50.tar.gz
  • Upload date:
  • Size: 6.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for tensorstore-0.1.50.tar.gz
Algorithm Hash digest
SHA256 e251226bfaca7829966e78712156df316137257328001d3295df849be577e61f
MD5 95d4bc073b6e0876ac10831712999e36
BLAKE2b-256 a75fd341bc67695dad52c5f86aace221cf39999d383708f058c410b8f98a9e6a

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1a17bc64ce895bc465afd5dfa09b25d4db459a050828b7bf1e2953d466896f19
MD5 386c665e1f5c9bb3afcf7eef6e86a1c6
BLAKE2b-256 d72e10cc14b3f3655b16b827cb9a48add9d033d3ca0d22bab18d78df916a99f1

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c8fd3319d9f1755eabadfd4fdb2f6a141cbc824836cf27fa1d50b73d41db2e4
MD5 f0bd899278d52a046d818c2c02736967
BLAKE2b-256 9af8acc70f34e84aad8ea9ef076393cdac9f3c0da0a4c32fff340e9091e554b5

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0b02b8e58033256b8dc26c06e1de8ee5ae430565d29dd7bea6762b00126e1b57
MD5 d3c348cd380d5307bf89e56ab3eca39e
BLAKE2b-256 1fe8dbdbc6cfd64dc8e544e004d4283eab130b87e4046b27c1036ec992ae8f7e

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dcc0b820f65c7fd884be3c2ab3cc8eef8f96b9e121d2a80cda391a13d531beb6
MD5 7ab2fe5698e66946970846a1218b2009
BLAKE2b-256 26b4ed2a28c9b3802301ef467aa8fb06b4cf595f767806e61d443aa9e9fcfd2f

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6d95638e226aeea41830efae6ed2c7e7c91fdcfad26db4dae536d797acc485c5
MD5 c3d98e0a984a405e98df25ed66ef338d
BLAKE2b-256 40edb576fa38ba01249ba21017505184adcef90b0539788541eb259f9441696f

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0d56508da22800619639975042ac1de73de06f81ee31c7faa311e2c2053d456
MD5 e2e5bba43135c9fb93360992f98ae791
BLAKE2b-256 c5892be1a5daba5a013ed6e1d70931f6e3397fe9b534d6d47328c5c0e727b8dc

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 273b2b76d8d27766f0604f81a8a8041fa441bd4dabc770ed9cc7ae33230a0dc8
MD5 43fdfc8f4acf1eac80d36a37da2d8b4a
BLAKE2b-256 6a90d0280c1608f018358e97eba4cc9e8a56d1482e55cb08d493823bfafde0f7

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 92b67b64875c12c3cde5c47e9dd051181d71045340b935d583d5914bfa055813
MD5 d7877b6a186bef4ad3be7bda9ea98baa
BLAKE2b-256 f057dd89bffc67d2e223f934e2369d676e76b724d4c55cfd6b1599e5a9d5a751

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 06c51a9534488eb09902883f34fe7bb0cf6254edc5dd24994b4d0a07575b3c4f
MD5 5d95ab256a29b1d4c5e599d2f63f94e3
BLAKE2b-256 ac36274c2f3622eaef93314cc9e31fff0cafe54df6be86356bc56a9c7044cf80

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 672554e7359a87e23bc15de18fb7aa6f8cd1097964fcf9e841d27eb775f2cb8d
MD5 2b2dcabe38d77077dd1f29c6f9a98313
BLAKE2b-256 8f70016472e31276d1887906303ea96b389caab3f49487c1f99379494b13b944

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 385e4f5d59eca38ab31bff5718e46521d0d65cc632d0e24783c1f63f5addfeb8
MD5 adc17844edeba070d873cd8f769e9db4
BLAKE2b-256 4cbb6ad2f347935b9c98747ad5601c515743cc66bbd5c0ea00f08383e468c7d7

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a1091838c0e7b613a7683eea968b4a7d1e9c87df0fe1d5d05bfa97059cfd7d3a
MD5 628a33f149ddb2cb71b28cc26eafb124
BLAKE2b-256 c3ba9e117f0d5edd386fc0bf91f8f6cb3412bcf08f581752b8bea117e928eb7c

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dfef891fb722907df530edeb260ed2fadb83695ac834d7957e71bd86f588031e
MD5 1bf5e866f1dc5639d9562fb6db8e62f1
BLAKE2b-256 7535684c47c9b77d8ec733af2510e80da375a66aeb7e98f66d5deb8d28149453

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b31b694484afb44355d92d5447611d89a4c0594824a816c30f21465d58c30430
MD5 b2f70a5f0eea2865f980e992644e09f9
BLAKE2b-256 db9f0a132eda9d0a34bef0f7ea119412520fabd29673ca71f226450318b35b73

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03b4bd51fb9d694209671f3d0521aa38c65bb49aa8c7933904e86c0f5234e633
MD5 6b8213945489245011f6c3119c3c3094
BLAKE2b-256 e2da823228c72b23575f692e0a9ede08cb173e68300074f89d71f8a94a5c32ba

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.50-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.50-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 16b03040f3f755dba859206890ec57983be50da594d3ae9e8bb855be58e7779d
MD5 bd8d89934e48c27338bc9cd215a22636
BLAKE2b-256 e7473628c3559ace01c455d485ee75f20b534f0e1e156939e74727cdff285799

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page