Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

License PyPI Build Docs

TensorStore is an open-source C++ and Python software library designed for storage and manipulation of large multi-dimensional arrays that:

  • Provides advanced, fully composable indexing operations and virtual views.

  • Provides a uniform API for reading and writing multiple array formats, including zarr and N5.

  • Natively supports multiple storage systems, such as local and network filesystems, Google Cloud Storage, Amazon S3-compatible object stores, HTTP servers, and in-memory storage.

  • Offers an asynchronous API to enable high-throughput access even to high-latency remote storage.

  • Supports read/writeback caching and transactions, with strong atomicity, isolation, consistency, and durability (ACID) guarantees.

  • Supports safe, efficient access from multiple processes and machines via optimistic concurrency.

Documentation and installation instructions are at https://google.github.io/tensorstore.

Getting Started

To get started using the TensorStore Python API, you can install the tensorstore PyPI package using:

pip install tensorstore

Refer to the tutorials and API documentation, or the announcement on the Google Research Blog for more details.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.52.tar.gz (6.4 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.52-cp312-cp312-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

tensorstore-0.1.52-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.52-cp312-cp312-macosx_11_0_arm64.whl (12.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

tensorstore-0.1.52-cp312-cp312-macosx_10_14_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

tensorstore-0.1.52-cp311-cp311-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.52-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.52-cp311-cp311-macosx_11_0_arm64.whl (12.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.52-cp311-cp311-macosx_10_14_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.52-cp310-cp310-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.52-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.52-cp310-cp310-macosx_11_0_arm64.whl (12.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.52-cp310-cp310-macosx_10_14_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.52-cp39-cp39-win_amd64.whl (10.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.52-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.52-cp39-cp39-macosx_11_0_arm64.whl (12.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.52-cp39-cp39-macosx_10_14_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.52.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.52.tar.gz
  • Upload date:
  • Size: 6.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for tensorstore-0.1.52.tar.gz
Algorithm Hash digest
SHA256 db2130a8b792ee2f1fb74a4e89ea049ecbb0070370d365d91870822cbf6cfca7
MD5 02c8b642ba03f80fd60052146843a6d4
BLAKE2b-256 a73075098312c8009272994af811d31b90c525149dc03b1c296d817883129d8f

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c194df86b5f765be44dad9f65b0d0babb558deb72df544e8448622df7946894e
MD5 62da48a54f7d05b258e7ee67805b932a
BLAKE2b-256 abb6ad1f273619f015145164cd0afd14c1373f211220f21d6449c32ea1ee8440

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 01f9812157cb77ce12dfdbb1e5d8e56566b905643418ccf8cd0ac422291a0f0a
MD5 ec2bea3c4be3a932d05182396e38a494
BLAKE2b-256 c8306adcaa7a4e17102addcf54809ead8f136d8986a197a71d0c6a4d097c4960

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c622ae55458122c37431515c023f508630a8894ee002862af139dadd5b27f053
MD5 09ba29d32dcb4c70efb68e849d4563cb
BLAKE2b-256 2e035091a88a6e684d7aebf2efc46332751cc2149e7b09e3441cb34a789f3d61

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8e58e16802a0a370ebcf5dcf05cdd9875f6d854e405913f15b59a691262fc417
MD5 ccf259b0d19fc956eeddd7694383c6ee
BLAKE2b-256 900bfb1648a335750f541e1f90d513635c9281be18fdf975c25ad4caf0d349db

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fa9fb2442bfbb403ef4321e3a46759790b6c3bad5b04f0f0172d05238928246a
MD5 d3ff4dd9346e2f6f4dbea4aeb61f6f66
BLAKE2b-256 95922d76cd1533f8433db85d668c2f350933790703b2621bf6d1a7824e6f1b10

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d09195df9f9803382517a6a4151a80072c972318f597e11bd4e2f60566432f5e
MD5 1943363159d729b5d4defdd904e13c39
BLAKE2b-256 36eead157a35e9d521ef05300e446ae938c35f92eb1475f197f309e804cf648d

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cc06bd2b11359299ffaf819300e03a6bd780146c29a5aea8b0b52c92692af90e
MD5 c99ffb41290b19e2f41164cdc00264af
BLAKE2b-256 50121e620e3b72c960ee2c3596c63d59c1c90aa9b4ada05ce92bc973f9680b28

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6ec54185eb8f6dc9df4c9ea51ab911c4987e5eef3d23f0fb3e68f06cd9787d2c
MD5 80c8badd98a4c0057f7a07d4b6d379b5
BLAKE2b-256 42ae2e1f3652704f9dd631239ccf2ff46efc32635ebf1713489e5ffb1e01ec3e

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 08770d82d64d79e5f60d68c14f3046a6a84bc0475080b089861eb5db414afc98
MD5 d5edfd624dbcd96b35b0b55e59dc24b3
BLAKE2b-256 e825d8edae4d983c3dbab6f858dbfab2709866b913d43d3adbed76e1706114f2

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5797416717f3c537bc02f08adbd46e5342eae0ed06b5a636b0eba0a56a8b9982
MD5 301663b41c8600d359f76438fbca6214
BLAKE2b-256 947996770bc445fe8e4a3928fe90fc751ceeb9c89f563bfd86635de5f1a81c25

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 88eb840032ca8771de2b0eebaff9d952d32f840a254caff8fc4834441e064400
MD5 2ce2518f8e0f28cc2b4afea194487133
BLAKE2b-256 f9e7fd1d172548e3231a49dd850497a17972c4acc0705f9759802d93292dadb9

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ca40ca0d4518ce37de5196799f699a929fd6686e1edee6b6352f045293de044f
MD5 698c02857f0f1500b51be5ee26e76af1
BLAKE2b-256 8476fbc3382b7151cc30fc4d665c39f5c109d8ac36b5bb18fb1c742251cb750e

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c3dc74ff23666e108fb9f0ba605b0caefc542826d66612bfff7a721a7d9e7934
MD5 e2981b0026bb3a60f3d94652612fdef0
BLAKE2b-256 045c2d8b7e578e8f124f54463fc0f90d63f50eac36ec11e4cc76a203969bec54

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a218fc4f2701f58eb3703c3f3f8f62a5bd6bb591cddea2a6cec513be3bf0329
MD5 05d197f65e400ec67acdd4ce975508b4
BLAKE2b-256 9dab709806ecef60e2f0bdc7bb2e967bf7088f70cc43a9d800f1e22112f0b90b

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6be8ffcbea58e0062c86e27d11c06cf35d5aaa5eb94293808f80539cd176e763
MD5 7941d1045730640f8d44dfeacc6235f6
BLAKE2b-256 2d57d32e2a42e3d1e9e078c8865e7e2b2f8ecf4a2b485e30a8f8a77f96cb716a

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.52-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.52-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 44b01753cbe30f8562c1b0e435daa4ed4dcdd2b3453a4e4e6f6d063bb00739fb
MD5 15016efedc6711d6161b87e890ad2a40
BLAKE2b-256 311db49a80ec7701bb22b4665e3cd51f0027e115d4d859a4239e780bddf87647

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page