Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

License PyPI Build Docs

TensorStore is an open-source C++ and Python software library designed for storage and manipulation of large multi-dimensional arrays that:

  • Provides advanced, fully composable indexing operations and virtual views.

  • Provides a uniform API for reading and writing multiple array formats, including zarr and N5.

  • Natively supports multiple storage systems, such as local and network filesystems, Google Cloud Storage, Amazon S3-compatible object stores, HTTP servers, and in-memory storage.

  • Offers an asynchronous API to enable high-throughput access even to high-latency remote storage.

  • Supports read caching and transactions, with strong atomicity, isolation, consistency, and durability (ACID) guarantees.

  • Supports safe, efficient access from multiple processes and machines via optimistic concurrency.

Documentation and installation instructions are at https://google.github.io/tensorstore.

Getting Started

To get started using the TensorStore Python API, you can install the tensorstore PyPI package using:

pip install tensorstore

Refer to the tutorials and API documentation, or the announcement on the Google Research Blog for more details.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.56.tar.gz (6.4 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.56-cp312-cp312-win_amd64.whl (11.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

tensorstore-0.1.56-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.56-cp312-cp312-macosx_11_0_arm64.whl (13.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

tensorstore-0.1.56-cp312-cp312-macosx_10_14_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

tensorstore-0.1.56-cp311-cp311-win_amd64.whl (11.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.56-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.56-cp311-cp311-macosx_11_0_arm64.whl (13.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.56-cp311-cp311-macosx_10_14_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.56-cp310-cp310-win_amd64.whl (11.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.56-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.56-cp310-cp310-macosx_11_0_arm64.whl (13.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.56-cp310-cp310-macosx_10_14_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.56-cp39-cp39-win_amd64.whl (11.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.56-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.56-cp39-cp39-macosx_11_0_arm64.whl (13.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.56-cp39-cp39-macosx_10_14_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.56.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.56.tar.gz
  • Upload date:
  • Size: 6.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.18

File hashes

Hashes for tensorstore-0.1.56.tar.gz
Algorithm Hash digest
SHA256 5f8f7bc056cb15bc0d45fedfe1ec38029d6f361aa2fb155a218a577a6d953013
MD5 6af72a4b8b03beb2899d85a323f81412
BLAKE2b-256 1a73d87c71fac5a85d2499256f509a6bbd3a0dfd5c31f5a3495190bb54c17aa2

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bd455a3299a8764ecddb00717f3231b396e41b7f1262a4d01443016361eaeb04
MD5 0b0b3be98c1b0517870166eae740b188
BLAKE2b-256 f0beefe428dacb03d02b5d9d1eba9c7aba3789eead41c80faa4ec9c88866024c

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 403b24aef3a9d760b3a387315e8815d1fa57a814085928a201fe39e5080716f6
MD5 f7a050518be464a425a79a4e429ae94e
BLAKE2b-256 5f4aca35ec450a14802cb5830ca78868a74680e80cbebde3e94eaa02614c129c

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 417f0b09605c5e3f1e1a79d575cf81e2d191bff0caa590b4f2e6e7dcba981f70
MD5 df3e9a6430bc5ebf02c96dd0c158bdbc
BLAKE2b-256 ab6c1d4bb3def1add6556fc240dd55af4c7256202efc6ea46130c7a8d2b3c04d

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e663eb20d5156a09a1075430e878cf0b85dbf12cf3e5072f527ebf56412c3abd
MD5 8ee3cdba28c980a612daf5a3e728f6a1
BLAKE2b-256 aa9ac9da6777358f833da91a90baa1adaca9dfd72b04c8f6cd02f7b22e799aed

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 47a04620b674cb9661a4fa4c6b147b4b29c44da16c00007e5051a01717e4b1bc
MD5 285b4307d99ba9f923cfe5f5ecb5439d
BLAKE2b-256 9ba488bc5463cfae90373630892629b66179901b9ced3dc0429e47995e7229f3

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ff3a6bbc2ce2a48295bcc7227e2fcd466bb2d3237852f40ccd9f48555159c23
MD5 22058111af973e15b49d51e36bf30331
BLAKE2b-256 f81750339312a5d9ca142730122b5caa5b4bb84ba91cda92f27829fd2811042a

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5cb6dd6a6528a498b537b55c70bc4a65a302ed3a223f1b76199f840edd1b34e1
MD5 9c1b616edbfdc17cea466cb372224f0f
BLAKE2b-256 18347f6737a46cfa2e8b9e4a20b8f40bf68e9f419a08cba4d963e2378dd7d457

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 561daafc8a4c9939fa4899d53a6b6b7472c0c25b3614b51e7b44cbd9c4f2d375
MD5 6d74972d07431c2704ca7bece2483b6d
BLAKE2b-256 33039aa795c954d5efb62caa6e4f0a7fe25839c713a671a3a5dc90ffa1b9db3d

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3b6f1a318f94f87e0808e9c34b5399e0819e202788287ba364896b225465f32f
MD5 596f41c8b3cefb94487a2574885e7645
BLAKE2b-256 87b8f0ad8b01cd85fafbcb0031f97adc81d3f762717c02e7b2bdc45ba543ea8c

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b320e36fcbf59337a270ab15e3791ca3a2720783a53491f27ff9e9477d04cbc
MD5 9a31002b52c330697799f89f9f597c8b
BLAKE2b-256 5e92c4e66e24ce5c3bebe207987e6edf8b681e86207e4582c2e9a2b3c70aaae2

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d0007989093e2bde4fc5def98726e4aff2d6513f1edb4232bf5af8993c9fff5
MD5 93549814930ff01e5cab5b3e17a91b1a
BLAKE2b-256 3a3a3365d1690b9d0c62c2ce0f00619e97a92889d276eee206fa800a51132fc3

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3293a33be31cafcc2feaf50b7551ea82d9d69a298b82e101f63f85569b642692
MD5 b1ed5d2f17e4a675a9f8763961fdabce
BLAKE2b-256 c109acddf2d3aebc325565ed4587669930ca724dbebf6939f08c2c8661995342

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 abb853ee019ac41e11123ae92f0c76bcb27135ba7910fc8b62b120c6668ef11a
MD5 dc33d302d78a46bfaf2c306b60ffc8ed
BLAKE2b-256 74529df97d1941d88ef751e108619f4422b16ca8e0549b7f4616c184e5a3c9b2

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e1dc7b9b82975b2d41fe43258ff5a58eecc9d73a596b19a08ecb43b278cf6ba
MD5 f7521b0669385a8701c6f51646f61736
BLAKE2b-256 b2ba44124c366191d05750a12abc0ad138a9fc607313816d2598531c59a6ba69

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 80725708276d321f59b7d4a4d4fd3d9e6ba111d89b232269d8f3e6ece3d3e340
MD5 e3584c630a80d143ebc6c81d9a2d10b1
BLAKE2b-256 ebccb2bfcfb68991ada4f7b75898d4594e4c9e9d2deabea44debdcb985f1ce97

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.56-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.56-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4c3dbf8c239c48ff18d0ff62d364e78138eb49e16c41f40bcad8a1446412448d
MD5 47a1d98d61d75b4f96f537dd324df570
BLAKE2b-256 e8db7394ff87de9cdc9761d446cee574a3c44f6f642db5083c5dd571a7f4d056

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page