Skip to main content

Read and write large, multi-dimensional arrays

Project description

TensorStore

License PyPI Build Docs

TensorStore is an open-source C++ and Python software library designed for storage and manipulation of large multi-dimensional arrays that:

  • Provides advanced, fully composable indexing operations and virtual views.

  • Provides a uniform API for reading and writing multiple array formats, including zarr and N5.

  • Natively supports multiple storage systems, such as local and network filesystems, Google Cloud Storage, Amazon S3-compatible object stores, HTTP servers, and in-memory storage.

  • Offers an asynchronous API to enable high-throughput access even to high-latency remote storage.

  • Supports read caching and transactions, with strong atomicity, isolation, consistency, and durability (ACID) guarantees.

  • Supports safe, efficient access from multiple processes and machines via optimistic concurrency.

Documentation and installation instructions are at https://google.github.io/tensorstore.

Getting Started

To get started using the TensorStore Python API, you can install the tensorstore PyPI package using:

pip install tensorstore

Refer to the tutorials and API documentation, or the announcement on the Google Research Blog for more details.

This is not an officially supported Google product.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorstore-0.1.63.tar.gz (6.5 MB view details)

Uploaded Source

Built Distributions

tensorstore-0.1.63-cp312-cp312-win_amd64.whl (11.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

tensorstore-0.1.63-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.63-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

tensorstore-0.1.63-cp312-cp312-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

tensorstore-0.1.63-cp312-cp312-macosx_10_14_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

tensorstore-0.1.63-cp311-cp311-win_amd64.whl (11.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorstore-0.1.63-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.63-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tensorstore-0.1.63-cp311-cp311-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tensorstore-0.1.63-cp311-cp311-macosx_10_14_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorstore-0.1.63-cp310-cp310-win_amd64.whl (11.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorstore-0.1.63-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.63-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorstore-0.1.63-cp310-cp310-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tensorstore-0.1.63-cp310-cp310-macosx_10_14_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorstore-0.1.63-cp39-cp39-win_amd64.whl (11.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorstore-0.1.63-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorstore-0.1.63-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorstore-0.1.63-cp39-cp39-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tensorstore-0.1.63-cp39-cp39-macosx_10_14_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file tensorstore-0.1.63.tar.gz.

File metadata

  • Download URL: tensorstore-0.1.63.tar.gz
  • Upload date:
  • Size: 6.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.8.19

File hashes

Hashes for tensorstore-0.1.63.tar.gz
Algorithm Hash digest
SHA256 6abde084d6932b4e733df109c1e819a9f7f5ed8e68372a78821c0f3e76a20469
MD5 7b70d2a5d50043af83673da0db85c940
BLAKE2b-256 478be38852acdc76853f35ca455b41eb059ee4a417120bd9dc7785e160296b13

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c465c4e89eaf286665e8933af6cd977ac7adac6c97dd7051cd8b25120d06d663
MD5 c8091c562e8eb505583a2ecda159ea12
BLAKE2b-256 3580fd2ea3b425c703f5a40e58ef61674ac9af3b0126e625d61497f1ca9d98e4

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4141bf6d24283553940c51306c15e712a3d6e71ffa4d293551780f7fd515512d
MD5 25a963d47fe9055c12465ba52cd83d7a
BLAKE2b-256 439dd1c9375ae53a67b862e611e54a416ecfd199faa4ae6e0ad522ed5b3cc04f

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 301b9820ed544aeb006dfe7ad22b87a01871768b3d08c1e23abf2721e1f0baad
MD5 c2102736686b14e750e18f6a77dc4a10
BLAKE2b-256 1148d070f137d4917f44b2384dd39fbb41647f19d144fea9b58f037e4f93b31f

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 355f2252e9d21122734b431394f4b18489ed42f20c21a923bbb8f2a2fe05ca3c
MD5 96a5d1a78b62779ee95025c16399835b
BLAKE2b-256 1ba73ad6443915d148e111d31de756452e19f8e1292c493d5cadcb4c57e1c7c7

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 185011ef308a4f216ce35e64e55704d6e1186dbec213b71834263f8af163041f
MD5 31b947c92ad70e89cc54cc2dc046cc31
BLAKE2b-256 c34580d70bcaace090cf0325e7480ce80272a0f5bb425700cbd8e9689151b583

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1f6353fc0412bf9b75291fbf2a38891ac9e6257a7e24a79a2c999c47090bd97d
MD5 8deebd5adf2829eff84d46ca0f4aaef7
BLAKE2b-256 ad6b0bce10a7f2cea05482765698b285a260360e887453676eb7ab7b30dfc285

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86bbed034d22440a60171fcf706143673f7e6f8b82364114b53be05635f3c0e3
MD5 1e91cfc3e328b771218965280cb66a54
BLAKE2b-256 687a2a8ec668854913800197e25fa63fb60b7df153fadbb02015e848201def71

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0469bd57e254a3f60f8d76f1e1e3c292c286e34ed3ed39c99174c3841ef5270
MD5 9565b811e40d29a327a1f3f79bfcad24
BLAKE2b-256 f2be4d165f98f64d320094c4214e34da6470187dcc89787782d99711f4ee456c

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66787600ed0fcec3f608fcc18ccb8072fb9d9da2b66ee2e2ee5778a91f3a57c7
MD5 dd9bd5a80a8f3470c82195ada9f78934
BLAKE2b-256 e60d1df7db60239c76bee9cf0d628538fa021403e6eddf4d80b38f37a32fd673

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cbe101dd370ee2c57bd45b4e31bace2d1df6cdc89a480bffa066e7b58a959fda
MD5 7d233a6aa6a56d31aad349d0dd7597df
BLAKE2b-256 7d088175e2ddfd1680c20cd004b9b680de01a4d889c36f25619f95febce5ddaa

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 27cd259d36190a25eff85bcb9ccfa41291a0c5bc7e778e81af58787dd67cf2a9
MD5 c73c2dfd2b96adc3253f054ae645cc41
BLAKE2b-256 7f6377158236120da845073c01617057aa975002ae9a8c28d25efbc94f799738

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9dc391e5d952ea60543d27566b2bb9cfc36672f5e1d23c314984ba4fae1cb3d
MD5 992e493132bee9154e8e0f6d88c9b5ec
BLAKE2b-256 7b85709ac9ca8fa875b53a3da4df7831d753efccabb70c72db2e310e35561fe2

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4ba910c41a99d74cce59c026f35a39d22f99556cb499950d158fb520e50ff14
MD5 67666bc9882236423b0d973a8552159c
BLAKE2b-256 28a3f5533feb7a5967f1661f81a7807417bf35b975f853005cec618b992db215

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8265a5d9c6b599a1cff5e368d1525519288ca14043493ee4acdc24f5f7a20dfa
MD5 b0135b156570160d4f7b22aacc7498f3
BLAKE2b-256 9155f7be2915aeb3c1482d07663f1ccf9ea7bf5ff7d6ca6e6b5ffaf56ebbd8af

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ab46c941c9fa0b6b547409548923a76dc7248df7042d7d91919ddc19e2d70bb9
MD5 90e4a418497164650e6330e8541f3026
BLAKE2b-256 89b267bde3c74410978698a5c78502f2de95edec6ee499409261ae37a629c0f9

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 48f9dcfc1c472c2b0729e416a649e41a68d912ee710305d12bab5cc5f392860a
MD5 0d3ea4eac4345ed0c73f35e6c1a97cb2
BLAKE2b-256 b68aac828b1066f2bbba495c50cebb1abf62e2ac509d9b6377192812c60a6c8d

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b168996e0db900896e2d7a281aed0da1f5560bb06e044d5fa4c80b5c43825bf
MD5 c3dfb46cfcfbb0c529560190e9d0cf38
BLAKE2b-256 85f5c1ec59f3c218b292951b59acb616d5a8e8fb7a3925c9f96b091461ce4c23

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8961ae56b414b3e2c674230819550dc3611b6dbe55243d2863a44a13cc35997a
MD5 528aad532099ed86d581a9cb3ba11e0a
BLAKE2b-256 66a2d6e597b240df9231b7274ac2faee7c1806d401cb0a174a1f9724a301147d

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e9f08d32ff85aaf29ead5db3ff0ef7ab55fbd6d48320e05c53da698d0a5b3a8b
MD5 19d3b56e8ed2d230391477869851fb8d
BLAKE2b-256 07b75af7549638e939b71f60892c0b26d2c79a7f27e3f1f1f85b7c28b8f2d0df

See more details on using hashes here.

Provenance

File details

Details for the file tensorstore-0.1.63-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorstore-0.1.63-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cc968d45c4cc779439e6a5c73ece124a04d8604c125a353ff661f1557cd0b2b7
MD5 045b045a6f6a5a99319873f5bbf50589
BLAKE2b-256 175d371e8adbb13ec41b16e998a963162c83b0cac9366723d1d3c18bb630f44a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page