Skip to main content

Fast offline queries of TESS FFI positions and filenames.

Project description

Fast offline queries of TESS FFI positions and url’s.

pypi pytest black flake8 mypy

tess-locator is a user-friendly package which provides fast offline access to an embedded database of TESS Full-Frame Image (FFI) meta data. It allows TESS pixel coordinates and FFI filenames to be queried in a fast way without requiring internet access.

Example use

Converting celestial to pixel coordinates:

>>> from tess_locator import locate
>>> locate("Alpha Cen")
List of 2 coordinates
[TessCoord(sector=11, camera=2, ccd=2, column=1700.2, row=1860.3, time=None)
  TessCoord(sector=12, camera=2, ccd=1, column=360.7, row=1838.8, time=None)]

Obtaining pixel coordinates for a specific time:

>>> locate("Alpha Cen", time="2019-04-28")
List of 1 coordinates
[TessCoord(sector=11, camera=2, ccd=2, column=1700.2, row=1860.3, time=2019-04-28 00:00:00)]

Obtaining FFI image meta data:

>>> locate("Alpha Cen")[0].get_images()
List of 1248 images
[TessImage(filename='tess2019113062933-s0011-2-2-0143-s_ffic.fits', begin='2019-04-23 06:34:41', end='2019-04-23 07:04:41')
  TessImage(filename='tess2019113065933-s0011-2-2-0143-s_ffic.fits', begin='2019-04-23 07:04:41', end='2019-04-23 07:34:41')
  TessImage(filename='tess2019113072933-s0011-2-2-0143-s_ffic.fits', begin='2019-04-23 07:34:41', end='2019-04-23 08:04:41')
  TessImage(filename='tess2019113075933-s0011-2-2-0143-s_ffic.fits', begin='2019-04-23 08:04:41', end='2019-04-23 08:34:41')
  ...
  TessImage(filename='tess2019140065932-s0011-2-2-0143-s_ffic.fits', begin='2019-05-20 07:05:08', end='2019-05-20 07:35:08')
  TessImage(filename='tess2019140072932-s0011-2-2-0143-s_ffic.fits', begin='2019-05-20 07:35:08', end='2019-05-20 08:05:08')
  TessImage(filename='tess2019140075932-s0011-2-2-0143-s_ffic.fits', begin='2019-05-20 08:05:08', end='2019-05-20 08:35:08')
  TessImage(filename='tess2019140082932-s0011-2-2-0143-s_ffic.fits', begin='2019-05-20 08:35:08', end='2019-05-20 09:05:08')]

Documentation

Please visit the tutorial.

Similar packages

  • tess-point uses a theoretical pointing model rather than the WCS data. It should agree with the WCS results to within 1-2 pixels. Compared to tess-point, we add a user-friendly API and the ability to specify the time, which is important for moving objects.

  • astroquery.mast includes the excellent TesscutClass.get_sectors() method which queries a web API. This package provides an offline version of that service, and adds the ability to query by time.

  • tess-waldo lets you visualize how a target moves over the detector across sectors. It queries the TessCut service to obtain this information. This package adds the ability to create such plots offline.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tess-locator-0.2.0.tar.gz (7.8 MB view details)

Uploaded Source

Built Distribution

tess_locator-0.2.0-py3-none-any.whl (7.8 MB view details)

Uploaded Python 3

File details

Details for the file tess-locator-0.2.0.tar.gz.

File metadata

  • Download URL: tess-locator-0.2.0.tar.gz
  • Upload date:
  • Size: 7.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.6 Darwin/19.6.0

File hashes

Hashes for tess-locator-0.2.0.tar.gz
Algorithm Hash digest
SHA256 738d030034fd352a0f4f7964da4a00c7eb6e7228208c9dec996f3fd9e92e9c2c
MD5 3c3f6899ea7a4c7a91fc78e7be2dd84c
BLAKE2b-256 76bd5ac7913719fcb0ced250328e6b085d47e2ceb45419b0ea722e5cd9a23030

See more details on using hashes here.

File details

Details for the file tess_locator-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: tess_locator-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.6 Darwin/19.6.0

File hashes

Hashes for tess_locator-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 71a23116e11bee312a6183909d5298f339ff9aeb7e238ad72f3202d057142c24
MD5 ce57562512cb099bdd47ef276d5fc30e
BLAKE2b-256 07ea62f88125304f6b6a757d37da0e6bb237ea817558d04fb68c1289b7e5e5d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page