Simple tool to predict text classes with various models.
Project description
# TextClassify
## Model
* fastText char
* fastText word
* CNN char embedding
* CNN word embedding
* CNN char & word embedding
* CNN + BiGRU + char & word embedding
## Segment Model
* pyltp
* jieba
## Embedding
* fastText (CBOW / skip-gram)
* gensim
char or word embedding
## Usage
```python
from text_classify import TextClassify
# default params
t = TextClassify()
text = ''
logtis = t.predict(text, precision='16')
# get index2label
t.index2label
# get top label
t.get_top_label(text, k=5, precision='16')
```
## Parameters
### `TextClassify`
* model: 'fasttext' (default), 'cnn', 'mcnn', 'mgcnn'
* cut: True, False (default)
* cut_model: 'pyltp' (default), 'jieba'
* pyltp_model: '/data_hdd/ltp_data/cws.model'
* fasttext_char_model: '/data_hdd/embedding/fasttext/zhihu_char_model.bin'
* fasttext_word_model: '/data_hdd/embedding/fasttext/zhihu_word_model.bin'
* cnn_char_model: '/home/keming/GitHub/custom_recom/cnn_char_fulltext_best.pth'
* cnn_word_model: '/home/keming/GitHub/custom_recom/cnn_word_fulltext_best.pth'
* mcnn_model: '/home/keming/GitHub/custom_recom/mcnn_fulltext_best.pth'
* mgcnn_model: '/home/keming/GitHub/custom_recom/mgcnn_fulltext_best.pth'
* char_embedding_model: '/data_hdd/embedding/wiki_char_256.model'
* word_embedding_model: '/data_hdd/embedding/wiki_word_256.model'
* words_index: '/data_hdd/zhihu/topic/words.csv'
* chars_index: '/data_hdd/zhihu/topic/chars.csv'
* labels_index: '/data_hdd/zhihu/topic/topics.csv'
* delete_char: '/data_hdd/zhihu/del_chars.txt'
* num_class: 384
* embedding_dim: 256
* num_filter: 128
* char_sentence_length: 256
* word_sentence_length: 128
* char_vocab_size: 12592
* word_vocab_size: 727811
* filter_size_1: [2, 3, 4, 5]
* filter_size_2: [2, 3, 4]
* rnn_num_unit: 128
* rnn_num_layer: 2
### `TextClassify.predict`
* text
* precision: '16' (default), '32', '64'
### `TextClassify.get_top_label`
* text
* k: 5 (default), numbers of label to return
* precision: '16' (default), '32', '64'
## Model
* fastText char
* fastText word
* CNN char embedding
* CNN word embedding
* CNN char & word embedding
* CNN + BiGRU + char & word embedding
## Segment Model
* pyltp
* jieba
## Embedding
* fastText (CBOW / skip-gram)
* gensim
char or word embedding
## Usage
```python
from text_classify import TextClassify
# default params
t = TextClassify()
text = ''
logtis = t.predict(text, precision='16')
# get index2label
t.index2label
# get top label
t.get_top_label(text, k=5, precision='16')
```
## Parameters
### `TextClassify`
* model: 'fasttext' (default), 'cnn', 'mcnn', 'mgcnn'
* cut: True, False (default)
* cut_model: 'pyltp' (default), 'jieba'
* pyltp_model: '/data_hdd/ltp_data/cws.model'
* fasttext_char_model: '/data_hdd/embedding/fasttext/zhihu_char_model.bin'
* fasttext_word_model: '/data_hdd/embedding/fasttext/zhihu_word_model.bin'
* cnn_char_model: '/home/keming/GitHub/custom_recom/cnn_char_fulltext_best.pth'
* cnn_word_model: '/home/keming/GitHub/custom_recom/cnn_word_fulltext_best.pth'
* mcnn_model: '/home/keming/GitHub/custom_recom/mcnn_fulltext_best.pth'
* mgcnn_model: '/home/keming/GitHub/custom_recom/mgcnn_fulltext_best.pth'
* char_embedding_model: '/data_hdd/embedding/wiki_char_256.model'
* word_embedding_model: '/data_hdd/embedding/wiki_word_256.model'
* words_index: '/data_hdd/zhihu/topic/words.csv'
* chars_index: '/data_hdd/zhihu/topic/chars.csv'
* labels_index: '/data_hdd/zhihu/topic/topics.csv'
* delete_char: '/data_hdd/zhihu/del_chars.txt'
* num_class: 384
* embedding_dim: 256
* num_filter: 128
* char_sentence_length: 256
* word_sentence_length: 128
* char_vocab_size: 12592
* word_vocab_size: 727811
* filter_size_1: [2, 3, 4, 5]
* filter_size_2: [2, 3, 4]
* rnn_num_unit: 128
* rnn_num_layer: 2
### `TextClassify.predict`
* text
* precision: '16' (default), '32', '64'
### `TextClassify.get_top_label`
* text
* k: 5 (default), numbers of label to return
* precision: '16' (default), '32', '64'
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file text_classify-0.0.8-py2.py3-none-any.whl
.
File metadata
- Download URL: text_classify-0.0.8-py2.py3-none-any.whl
- Upload date:
- Size: 10.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 317d292c27e1eb1aaae0879b5aee8b0030ebb2431135b7c38773d2c883f4c767 |
|
MD5 | 832d9297cbc00384a1632c19e9fc2122 |
|
BLAKE2b-256 | 4b14eb2f2ce36770ef53730eb0cc1abfe8932babeeff293b067be9d5469a8ead |