Skip to main content

Compute distance between the two texts.

Project description

TextDistance logo

TextDistance logo

Build Status PyPI version Status Code size License

TextDistance – python library for compare distance between two or more sequences by many algorithms.

Features:

  • 30+ algorithms

  • Pure python implementation

  • Simple usage

  • More than two sequences comparing

  • Some algorithms have more than one implementation in one class.

  • Optional numpy usage for maximum speed.

Algorithms

Edit based

Algorithm

Class

Functions

Hamming

Hamming

hamming

MLIPNS

Mlipns

mlipns

Levenshtein

Levenshtein

levenshtein

Damerau-Levenshtein

DamerauLevenshtein

damerau_levenshtein

Jaro-Winkler

JaroWinkler

jaro_winkler, jaro

Strcmp95

StrCmp95

strcmp95

Needleman-Wunsch

NeedlemanWunsch

needleman_wunsch

Gotoh

Gotoh

gotoh

Smith-Waterman

SmithWaterman

smith_waterman

Token based

Algorithm

Class

Functions

Jaccard index

Jaccard

jaccard

Sørensen–Dice coefficient

Sorensen

sorensen, sorensen_dice, dice

Tversky index

Tversky

tversky

Overlap coefficient

Overlap

overlap

Tanimoto distance

Tanimoto

tanimoto

Cosine similarity

Cosine

cosine

Monge-Elkan

MongeElkan

monge_elkan

Bag distance

Bag

bag

Sequence based

Algorithm

Class

Functions

longest common subsequence similarity

LCSSeq

lcsseq

longest common substring similarity

LCSStr

lcsstr

Ratcliff-Obershelp similarity

RatcliffObershelp

ratcliff_obershelp

Compression based

Work in progress. Now all algorithms compare two strings as array of bits, not by chars.

NCD - normalized compression distance.

Functions:

  1. bz2_ncd

  2. lzma_ncd

  3. arith_ncd

  4. rle_ncd

  5. bwtrle_ncd

  6. zlib_ncd

Phonetic

Algorithm

Class

Functions

MRA

MRA

mra

Editex

Editex

editex

Simple

Algorithm

Class

Functions

Prefix similarity

Prefix

prefix

Postfix similarity

Postfix

postfix

Length distance

Length

length

Identity similarity

Identity

identity

Matrix similarity

Matrix

matrix

Installation

Stable

Only pure python implementation:

pip install textdistance

With common side libraries for maximum speed:

pip install textdistance[common]

With all libraries (required for benchmarking):

pip install textdistance[all]

With extras only for some algorithm:

pip install textdistance[Hamming]

Algorithms with available extras: DamerauLevenshtein, Hamming, Jaro, JaroWinkler, Levenshtein.

Dev

Via pip:

pip install -e git+https://github.com/orsinium/textdistance.git#egg=textdistance

Or clone repo and install with some extras:

git clone https://github.com/orsinium/textdistance.git
pip install -e .[all]

Usage

All algorithms have 2 interfaces:

  1. Class with algorithm-specific params for customizing.

  2. Class instance with default params for quick and simple usage.

All algorithms have some common methods:

  1. .distance(*sequences) – calculate distance between sequences.

  2. .similarity(*sequences) – calculate similarity for sequences.

  3. .maximum(*sequences) – maximum possible value for distance and similarity. For any sequence: distance + similarity == maximum.

  4. .normalized_distance(*sequences) – normalized distance between sequences. The return value is a float between 0 and 1, where 0 means equal, and 1 totally different.

  5. .normalized_similarity(*sequences) – normalized similarity for sequences. The return value is a float between 0 and 1, where 0 means totally different, and 1 equal.

Most common init arguments:

  1. qval – q-value for split sequences into q-grams. Possible values:

    • 1 (default) – compare sequences by chars.

    • 2 or more – transform sequences to q-grams.

    • None – split sequences by words.

  2. as_set – for token-based algorithms:

    • True – t and ttt is equal.

    • False (default) – t and ttt is different.

Example

For example, Hamming distance:

import textdistance

textdistance.hamming('test', 'text')
# 1

textdistance.hamming.distance('test', 'text')
# 1

textdistance.hamming.similarity('test', 'text')
# 3

textdistance.hamming.normalized_distance('test', 'text')
# 0.25

textdistance.hamming.normalized_similarity('test', 'text')
# 0.75

textdistance.Hamming(qval=2).distance('test', 'text')
# 2

Any other algorithms have same interface.

Side libraries

For main algorithms textdistance try to call known external libraries (fastest first) if available (installed in your system) and possible (this implementation can compare this sequences). Install textdistance with common extras for this feature.

You can disable this by passing external=False argument on init:

import textdistance
hamming = textdistance.Hamming(external=False)
hamming('text', 'testit')
# 3

Supported libraries:

  1. abydos

  2. Distance

  3. jellyfish

  4. py_stringmatching

  5. pylev

  6. python-Levenshtein

  7. pyxDamerauLevenshtein

Benchmarks

For textdistance without extra requirements:

algorithm

library

function

time

DamerauLeven shtein

jellyfish

damerau_le venshtein_ distance

0.01043 39

DamerauLeven shtein

pyxdamerau levenshtei n

damerau_le venshtein_ distance

0.15075

DamerauLeven shtein

textdist ance

DamerauLeve nshtein

0.30708 3

DamerauLeven shtein

pylev

damerau_le venshtein

0.76065 5

DamerauLeven shtein

abydos

damerau_le venshtein

4.59495

Hamming

Levenshtei n

hamming

0.00145 914

Hamming

jellyfish

hamming_di stance

0.00230 915

Hamming

distance

hamming

0.03575 62

Hamming

abydos

hamming

0.03984 52

Hamming

textdist ance

Hamming

0.13997

Jaro

Levenshtei n

jaro

0.00312 573

Jaro

jellyfish

jaro_dista nce

0.00522 548

Jaro

py_string matching

jaro

0.17990 1

Jaro

textdist ance

Jaro

0.26922 9

JaroWinkler

Levenshtei n

jaro_winkl er

0.00330 839

JaroWinkler

jellyfish

jaro_winkl er

0.00537 344

JaroWinkler

textdist ance

JaroWinkler

0.28676 3

Levenshtein

Levenshtei n

distance

0.00410 18

Levenshtein

jellyfish

levenshtein _distance

0.00618 915

Levenshtein

textdist ance

Levenshtein

0.17044 3

Levenshtein

py_string matching

levenshtein

0.25270 9

Levenshtein

pylev

levenshtein

0.56995 7

Levenshtein

distance

levenshtein

1.13711

Levenshtein

abydos

levenshtein

3.68653

Total: 24 libs.

Textdistance use benchmark’s results for algorithm’s optimization and try call fastest external libs first (if possible).

If you want you can run benchmark manually on youre system:

pip install textdistance[all]
python3 -m textdistance.benchmark

Consequently textdistance show benchmarks results table for your system and save libraries priorities into libraries.json file in textdistance’s folder. This file will be used by textdistance for calling fastest algorithm implementation first.

Test

You can run tests via tox:

sudo pip3 install tox
tox

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

textdistance-3.0.0.tar.gz (30.0 kB view details)

Uploaded Source

File details

Details for the file textdistance-3.0.0.tar.gz.

File metadata

File hashes

Hashes for textdistance-3.0.0.tar.gz
Algorithm Hash digest
SHA256 df602b7bf59f1f2b4d508fa4e283eb4617af785bd68face56991ef05657923bc
MD5 aeadd7e7a1256042d680e07b35b293a4
BLAKE2b-256 9661b765d8f2b3eb2c6ea1b73a740046b9a6372dd488c9e8de978d7fb54af989

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page