Skip to main content

Microsoft Textworld - A Text-based Learning Environment.

Project description

TextWorld

Build Status PyPI version Documentation Status Join the chat at https://gitter.im/Microsoft/TextWorld

A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also check out aka.ms/textworld for more info about TextWorld and its creators. Have questions or feedback about TextWorld? Send them to textworld@microsoft.com or use the Gitter channel listed above.

Installation

TextWorld requires Python 3 and only supports Linux and macOS systems at the moment. For Windows users, docker can be used as a workaround (see Docker section below).

Requirements

TextWorld requires some system libraries for its native components. On a Debian/Ubuntu-based system, these can be installed with

sudo apt update && sudo apt install build-essential libffi-dev python3-dev curl git

And on macOS, with

brew install libffi curl git

Note: We advise our users to use virtual environments to avoid Python packages from different projects to interfere with each other. Popular choices are Conda Environments and Virtualenv

Installing TextWorld

The easiest way to install TextWorld is via pip:

pip install textworld

Or, after cloning the repo, go inside the root folder of the project (i.e. alongside setup.py) and run

pip install .

Visualization

TextWorld comes with some tools to visualize game states. Make sure all dependencies are installed by running

pip install textworld[vis]

Then, you will need to install either the Chrome or Firefox webdriver (depending on which browser you have currently installed). If you have Chrome already installed you can use the following command to install chromedriver

pip install chromedriver_installer

Current visualization tools include: take_screenshot, visualize and show_graph from textworld.render.

Docker

A docker container with the latest TextWorld release is available on DockerHub.

docker pull marccote19/textworld
docker run -p 8888:8888 -it --rm marccote19/textworld

Then, in your browser, navigate to the Jupyter notebook's link displayed in your terminal. The link should look like this

http://127.0.0.1:8888/?token=8d7aaa...e95

Note: See README.md in the docker folder for troubleshooting information.

Usage

Generating a game

TextWorld provides an easy way of generating simple text-based games via the tw-make script. For instance,

tw-make custom --world-size 5 --nb-objects 10 --quest-length 5 --seed 1234 --output tw_games/custom_game.z8

where custom indicates we want to customize the game using the following options: --world-size controls the number of rooms in the world, --nb-objects controls the number of objects that can be interacted with (excluding doors) and --quest-length controls the minimum number of commands that is required to type in order to win the game. Once done, the game custom_game.z8 will be saved in the tw_games/ folder.

Playing a game (terminal)

To play a game, one can use the tw-play script. For instance, the command to play the game generated in the previous section would be

tw-play tw_games/custom_game.z8

Note: Only Z-machine's games (*.z1 through .z8) and Glulx's games (.ulx) are supported.

To visualize the game state while playing, use the --viewer [port] option.

tw-play tw_games/custom_game.z8 --viewer

A new browser tab should open and track your progress in the game.

Playing a game (Python + Gym)

Here's how you can interact with a text-based game from within Python using OpenAI's Gym framework.

import gym
import textworld.gym

# Register a text-based game as a new Gym's environment.
env_id = textworld.gym.register_game("tw_games/custom_game.z8",
                                     max_episode_steps=50)

env = gym.make(env_id)  # Start the environment.

obs, infos = env.reset()  # Start new episode.
env.render()

score, moves, done = 0, 0, False
while not done:
    command = input("> ")
    obs, score, done, infos = env.step(command)
    env.render()
    moves += 1

env.close()
print("moves: {}; score: {}".format(moves, score))

Note: To play text-based games without Gym, see Playing text-based games with TextWorld.ipynb

Documentation

For more information about TextWorld, check the documentation.

Visual Studio Code

You can install the textworld-vscode extension that enables syntax highlighting for editing .twl and .twg TextWorld files.

Notebooks

Check the notebooks provided with the framework to see what you can do with it. You will need the Jupyter Notebook to run them. You can install it with

pip install jupyter

Citing TextWorld

If you use TextWorld, please cite the following BibTex:

@Article{cote18textworld,
  author = {Marc-Alexandre C\^ot\'e and
            \'Akos K\'ad\'ar and
            Xingdi Yuan and
            Ben Kybartas and
            Tavian Barnes and
            Emery Fine and
            James Moore and
            Ruo Yu Tao and
            Matthew Hausknecht and
            Layla El Asri and
            Mahmoud Adada and
            Wendy Tay and
            Adam Trischler},
  title = {TextWorld: A Learning Environment for Text-based Games},
  journal = {CoRR},
  volume = {abs/1806.11532},
  year = {2018}
}

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

textworld-1.4.5rc3.tar.gz (687.7 kB view details)

Uploaded Source

Built Distributions

textworld-1.4.5rc3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

textworld-1.4.5rc3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

textworld-1.4.5rc3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

textworld-1.4.5rc3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

textworld-1.4.5rc3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

File details

Details for the file textworld-1.4.5rc3.tar.gz.

File metadata

  • Download URL: textworld-1.4.5rc3.tar.gz
  • Upload date:
  • Size: 687.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for textworld-1.4.5rc3.tar.gz
Algorithm Hash digest
SHA256 c8165b42193bdc3df41331ddaede00507f2b581cc298447b47a54d3672c63435
MD5 c0625e4c45560bcf3dba61c3116817a6
BLAKE2b-256 60a0af926586a196e7aaede56fbe83555172e49d25548a5db9bc82b9da3108a3

See more details on using hashes here.

File details

Details for the file textworld-1.4.5rc3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for textworld-1.4.5rc3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 d81cc82de1603f3b8d109903220eb6d979d805ddd63970c30be5f8dc0b9d465f
MD5 dc79a6726096a195cc6c1a505b3cef3d
BLAKE2b-256 339ab95e26f7745f187e00eca750575487b1adc257780927abf078105ea8daf9

See more details on using hashes here.

File details

Details for the file textworld-1.4.5rc3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for textworld-1.4.5rc3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 eefc88f0d3fc9efad94a5429a8d94f89e7793882ff9e2ba11dc4fb9d3722654f
MD5 7737e3b7bac8f2b28252217ae0b04cfe
BLAKE2b-256 c42b1f0deb59e208683d7f7d543e231f1692d8ed32e75f6f1509ae35f9eb8afa

See more details on using hashes here.

File details

Details for the file textworld-1.4.5rc3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for textworld-1.4.5rc3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 e29fece92a2dd6a5c0ea16410906136330ff19c10d20ab6df15c61d97e67f120
MD5 f0efb6fc9f1af56a76629af3e11810e3
BLAKE2b-256 a379505e102c5ad0f5ed56406de8b06735bee9e7e114615a4ff60a12d95643dc

See more details on using hashes here.

File details

Details for the file textworld-1.4.5rc3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for textworld-1.4.5rc3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 f72597f09c286c0206aca7e6d2a2c55b497e383e1f41ae127bc0749ee540b31f
MD5 76412ca47e9a8c2331a6c43357f3b241
BLAKE2b-256 006880054c966536f3871e2de11255fe1dcc03ca28eb13b184df3ac506592214

See more details on using hashes here.

File details

Details for the file textworld-1.4.5rc3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for textworld-1.4.5rc3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 d17550a22506198ff342a3925b038c48f0f2e686c93d8c4f7792a54e0499e87a
MD5 e6e21e237bb2be1226c14bf39eae6f8d
BLAKE2b-256 312cfb90a0f580d2711af315f461ee06d5447c1d99e09ea9e09dac7293176f54

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page