Skip to main content

Microsoft Textworld - A Text-based Learning Environment.

Project description

TextWorld

Build Status PyPI version Documentation Status Join the chat at https://gitter.im/Microsoft/TextWorld

A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also check out aka.ms/textworld for more info about TextWorld and its creators. Have questions or feedback about TextWorld? Send them to textworld@microsoft.com or use the Gitter channel listed above.

Installation

TextWorld requires Python 3 and only supports Linux and macOS systems at the moment. For Windows users, docker can be used as a workaround (see Docker section below).

Requirements

TextWorld requires some system libraries for its native components. On a Debian/Ubuntu-based system, these can be installed with

sudo apt update && sudo apt install build-essential libffi-dev python3-dev curl git

And on macOS, with

brew install libffi curl git

Note: We advise our users to use virtual environments to avoid Python packages from different projects to interfere with each other. Popular choices are Conda Environments and Virtualenv

Installing TextWorld

The easiest way to install TextWorld is via pip:

pip install textworld

Or, after cloning the repo, go inside the root folder of the project (i.e. alongside setup.py) and run

pip install .

Visualization

TextWorld comes with some tools to visualize game states. Make sure all dependencies are installed by running

pip install textworld[vis]

Then, you will need to install either the Chrome or Firefox webdriver (depending on which browser you have currently installed). If you have Chrome already installed you can use the following command to install chromedriver

pip install chromedriver_installer

Current visualization tools include: take_screenshot, visualize and show_graph from textworld.render.

Docker

A docker container with the latest TextWorld release is available on DockerHub.

docker pull marccote19/textworld
docker run -p 8888:8888 -it --rm marccote19/textworld

Then, in your browser, navigate to the Jupyter notebook's link displayed in your terminal. The link should look like this

http://127.0.0.1:8888/?token=8d7aaa...e95

Note: See README.md in the docker folder for troubleshooting information.

Usage

Generating a game

TextWorld provides an easy way of generating simple text-based games via the tw-make script. For instance,

tw-make custom --world-size 5 --nb-objects 10 --quest-length 5 --seed 1234 --output tw_games/custom_game.z8

where custom indicates we want to customize the game using the following options: --world-size controls the number of rooms in the world, --nb-objects controls the number of objects that can be interacted with (excluding doors) and --quest-length controls the minimum number of commands that is required to type in order to win the game. Once done, the game custom_game.z8 will be saved in the tw_games/ folder.

Playing a game (terminal)

To play a game, one can use the tw-play script. For instance, the command to play the game generated in the previous section would be

tw-play tw_games/custom_game.z8

Note: Only Z-machine's games (*.z1 through .z8) and Glulx's games (.ulx) are supported.

To visualize the game state while playing, use the --viewer [port] option.

tw-play tw_games/custom_game.z8 --viewer

A new browser tab should open and track your progress in the game.

Playing a game (Python + Gym)

Here's how you can interact with a text-based game from within Python using OpenAI's Gym framework.

import gym
import textworld.gym

# Register a text-based game as a new Gym's environment.
env_id = textworld.gym.register_game("tw_games/custom_game.z8",
                                     max_episode_steps=50)

env = gym.make(env_id)  # Start the environment.

obs, infos = env.reset()  # Start new episode.
env.render()

score, moves, done = 0, 0, False
while not done:
    command = input("> ")
    obs, score, done, infos = env.step(command)
    env.render()
    moves += 1

env.close()
print("moves: {}; score: {}".format(moves, score))

Note: To play text-based games without Gym, see Playing text-based games with TextWorld.ipynb

Documentation

For more information about TextWorld, check the documentation.

Visual Studio Code

You can install the textworld-vscode extension that enables syntax highlighting for editing .twl and .twg TextWorld files.

Notebooks

Check the notebooks provided with the framework to see what you can do with it. You will need the Jupyter Notebook to run them. You can install it with

pip install jupyter

Citing TextWorld

If you use TextWorld, please cite the following BibTex:

@Article{cote18textworld,
  author = {Marc-Alexandre C\^ot\'e and
            \'Akos K\'ad\'ar and
            Xingdi Yuan and
            Ben Kybartas and
            Tavian Barnes and
            Emery Fine and
            James Moore and
            Ruo Yu Tao and
            Matthew Hausknecht and
            Layla El Asri and
            Mahmoud Adada and
            Wendy Tay and
            Adam Trischler},
  title = {TextWorld: A Learning Environment for Text-based Games},
  journal = {CoRR},
  volume = {abs/1806.11532},
  year = {2018}
}

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

textworld-1.5.2.tar.gz (688.6 kB view details)

Uploaded Source

Built Distributions

textworld-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

textworld-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

textworld-1.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

textworld-1.5.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

File details

Details for the file textworld-1.5.2.tar.gz.

File metadata

  • Download URL: textworld-1.5.2.tar.gz
  • Upload date:
  • Size: 688.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for textworld-1.5.2.tar.gz
Algorithm Hash digest
SHA256 3b84626cbbf66e9cb506e16f8bab0d9776a47b0d366000e70c9ea342125ca598
MD5 60a9431d9c1babcbd3a48a5fa479a225
BLAKE2b-256 b0fc0d049340b55f9d4c2aa74e7558662da85ff47bf910ae978f1d872a31e07e

See more details on using hashes here.

File details

Details for the file textworld-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for textworld-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 8a143861fb42251e8110f903ec1e4053078c6e3672443985106e6d4d7000ae92
MD5 06e6a3adf8679d3aca7e2f7c6e158366
BLAKE2b-256 446cf2977f7743694ab274f5ec3480bbd2c998088c0b6932940a21a746873cfc

See more details on using hashes here.

File details

Details for the file textworld-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for textworld-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 2f42d946804469e2e297b641cedb9fc5e8817fb65c2643b4654fbcbed8d53719
MD5 7db110eb57941b3a0991a5343d7f1e5d
BLAKE2b-256 5330a884f394acec5214376f76767ec00f25d9af9927ae783fb575877ffa2ecd

See more details on using hashes here.

File details

Details for the file textworld-1.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for textworld-1.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 8c52d8ed6fe3fb1b81846e69f3b23a47e8cc29acd43d0a10d859a6dfef19cad5
MD5 25107c2befe980a71fba6e49cea219da
BLAKE2b-256 1532bc036a62cee0c1cb71944fcd54c38b7c1e56bf0ec13a89d5b038ca6baea1

See more details on using hashes here.

File details

Details for the file textworld-1.5.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for textworld-1.5.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 abe9b40e28d906c19c2cf87e4a918707c1cb1f961e3f5c80502b0029e1b85ad3
MD5 19e68cde935a782109e53013c7cf53f9
BLAKE2b-256 579543d9d204fea5298542b51563a9b009e730dbdc8e9c78c165cfb12cbe4bbb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page