Skip to main content

TF-Agents: A Reinforcement Learning Library for TensorFlow

Project description

TF-Agents: A library for Reinforcement Learning in TensorFlow

NOTE: Current TF-Agents pre-release is under active development and interfaces may change at any time. Feel free to provide feedback and comments.

To get started, we recommend checking out one of our Colab tutorials. If you need an intro to RL (or a quick recap), start here. Otherwise, check out our DQN tutorial to get an agent up and running in the Cartpole environment.

Table of contents

Agents
Tutorials
Examples
Installation
Contributing
Principles
Citation
Disclaimer

Agents

In TF-Agents, the core elements of RL algorithms are implemented as Agents. An agent encompasses two main responsibilities: defining a Policy to interact with the Environment, and how to learn/train that Policy from collected experience.

Currently the following algorithms are available under TF-Agents:

Tutorials

See tf_agents/colabs/ for tutorials on the major components provided.

Examples

End-to-end examples training agents can be found under each agent directory. e.g.:

Installation

To install the latest version, use nightly builds of TF-Agents under the pip package tf-agents-nightly, which requires you install on one of tf-nightly and tf-nightly-gpu and also tfp-nightly. Nightly builds include newer features, but may be less stable than the versioned releases.

To install the nightly build version, run the following:

# Installing with the `--upgrade` flag ensures you'll get the latest version.
pip install --user --upgrade tf-agents-nightly  # depends on tf-nightly

If you clone the repository you will still need a tf-nightly installation. You can then run pip install -e .[tests] from the agents directory to get dependencies to run tests.

Contributing

We're eager to collaborate with you! See CONTRIBUTING.md for a guide on how to contribute. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code.

Principles

This project adheres to Google's AI principles. By participating, using or contributing to this project you are expected to adhere to these principles.

Citation

If you use this code please cite it as:

@misc{TFAgents,
  title = {{TF-Agents}: A library for Reinforcement Learning in TensorFlow},
  author = "{Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez,
    Pablo Castro, Ethan Holly, Sam Fishman, Ke Wang, Ekaterina Gonina, Neal Wu,
    Chris Harris, Vincent Vanhoucke, Eugene Brevdo}",
  howpublished = {\url{https://github.com/tensorflow/agents}},
  url = "https://github.com/tensorflow/agents",
  year = 2018,
  note = "[Online; accessed 25-June-2019]"
}

Disclaimer

This is not an official Google product.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

tf_agents_nightly-0.2.0.dev20190830-py2.py3-none-any.whl (622.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file tf_agents_nightly-0.2.0.dev20190830-py2.py3-none-any.whl.

File metadata

  • Download URL: tf_agents_nightly-0.2.0.dev20190830-py2.py3-none-any.whl
  • Upload date:
  • Size: 622.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.1

File hashes

Hashes for tf_agents_nightly-0.2.0.dev20190830-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f7a80760b75c59b966afcf013cf05898665846587d40456ffcefa1e013446508
MD5 8ed8f858fdabfa83d36c0480f81dfc55
BLAKE2b-256 6df9fa6afdce100dbf6f944dd00424f6d6f4912efa28dc73c5def20699d591f1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page