Skip to main content

Interpretability Callbacks for Tensorflow 2.0

Project description

tf-explain

Pypi Version Build Status Documentation Status Python Versions Tensorflow Versions Code style: black

tf-explain implements interpretability methods as Tensorflow 2.x callbacks to ease neural network's understanding. See Introducing tf-explain, Interpretability for Tensorflow 2.0

Documentation: https://tf-explain.readthedocs.io

Installation

tf-explain is available on PyPi as an alpha release. To install it:

virtualenv venv -p python3.6
pip install tf-explain

tf-explain is compatible with Tensorflow 2.x. It is not declared as a dependency to let you choose between full and standalone-CPU versions. Additionally to the previous install, run:

# For CPU or GPU
pip install tensorflow==2.2.0

Opencv is also a dependency. To install it, run:

# For CPU or GPU
pip install opencv-python

Quickstart

tf-explain offers 2 ways to apply interpretability methods. The full list of methods is the Available Methods section.

On trained model

The best option is probably to load a trained model and apply the methods on it.

# Load pretrained model or your own
model = tf.keras.applications.vgg16.VGG16(weights="imagenet", include_top=True)

# Load a sample image (or multiple ones)
img = tf.keras.preprocessing.image.load_img(IMAGE_PATH, target_size=(224, 224))
img = tf.keras.preprocessing.image.img_to_array(img)
data = ([img], None)

# Start explainer
explainer = GradCAM()
grid = explainer.explain(data, model, class_index=281)  # 281 is the tabby cat index in ImageNet

explainer.save(grid, ".", "grad_cam.png")

During training

If you want to follow your model during the training, you can also use it as a Keras Callback, and see the results directly in TensorBoard.

from tf_explain.callbacks.grad_cam import GradCAMCallback

model = [...]

callbacks = [
    GradCAMCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        output_dir=output_dir,
    )
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Available Methods

  1. Activations Visualization
  2. Vanilla Gradients
  3. Gradients*Inputs
  4. Occlusion Sensitivity
  5. Grad CAM (Class Activation Maps)
  6. SmoothGrad
  7. Integrated Gradients

Activations Visualization

Visualize how a given input comes out of a specific activation layer

from tf_explain.callbacks.activations_visualization import ActivationsVisualizationCallback

model = [...]

callbacks = [
    ActivationsVisualizationCallback(
        validation_data=(x_val, y_val),
        layers_name=["activation_1"],
        output_dir=output_dir,
    ),
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Vanilla Gradients

Visualize gradients importance on input image

from tf_explain.callbacks.vanilla_gradients import VanillaGradientsCallback

model = [...]

callbacks = [
    VanillaGradientsCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        output_dir=output_dir,
    ),
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Gradients*Inputs

Variant of Vanilla Gradients ponderating gradients with input values

from tf_explain.callbacks.gradients_inputs import GradientsInputsCallback

model = [...]

callbacks = [
    GradientsInputsCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        output_dir=output_dir,
    ),
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Occlusion Sensitivity

Visualize how parts of the image affects neural network's confidence by occluding parts iteratively

from tf_explain.callbacks.occlusion_sensitivity import OcclusionSensitivityCallback

model = [...]

callbacks = [
    OcclusionSensitivityCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        patch_size=4,
        output_dir=output_dir,
    ),
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Occlusion Sensitivity for Tabby class (stripes differentiate tabby cat from other ImageNet cat classes)

Grad CAM

Visualize how parts of the image affects neural network's output by looking into the activation maps

From Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

from tf_explain.callbacks.grad_cam import GradCAMCallback

model = [...]

callbacks = [
    GradCAMCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        output_dir=output_dir,
    )
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

SmoothGrad

Visualize stabilized gradients on the inputs towards the decision

From SmoothGrad: removing noise by adding noise

from tf_explain.callbacks.smoothgrad import SmoothGradCallback

model = [...]

callbacks = [
    SmoothGradCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        num_samples=20,
        noise=1.,
        output_dir=output_dir,
    )
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Integrated Gradients

Visualize an average of the gradients along the construction of the input towards the decision

From Axiomatic Attribution for Deep Networks

from tf_explain.callbacks.integrated_gradients import IntegratedGradientsCallback

model = [...]

callbacks = [
    IntegratedGradientsCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        n_steps=20,
        output_dir=output_dir,
    )
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Roadmap

Contributing

To contribute to the project, please read the dedicated section.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tf-explain-0.3.0.tar.gz (22.1 kB view details)

Uploaded Source

Built Distribution

tf_explain-0.3.0-py3-none-any.whl (43.5 kB view details)

Uploaded Python 3

File details

Details for the file tf-explain-0.3.0.tar.gz.

File metadata

  • Download URL: tf-explain-0.3.0.tar.gz
  • Upload date:
  • Size: 22.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.5

File hashes

Hashes for tf-explain-0.3.0.tar.gz
Algorithm Hash digest
SHA256 f5cfb18d60bd560bf48d2518b9f5b8b3716df57577db2a20333c5f9ef40c739a
MD5 1dfadeb47427113d109222e9f71a7c8c
BLAKE2b-256 edff20c68bcef027c681dbb274bfec5402754cb8fe11dd1c4ecb4d4e4a731787

See more details on using hashes here.

Provenance

File details

Details for the file tf_explain-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: tf_explain-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 43.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.5

File hashes

Hashes for tf_explain-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2e291b1f288676e1fd71af0e5af0d06c83068dc9f7945910d065cc4d17fd45bd
MD5 a12e8bd9321ddd6b779aa1956a64e4ca
BLAKE2b-256 09f04faa7a1749e39d0d623f801ccf185230d22b885fa212d8ee08aa47cebaa4

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page