TFLite Model Maker: a model customization library for on-device applications.
Project description
TFLite Model Maker
Overview
The TFLite Model Maker library simplifies the process of adapting and converting a TensorFlow neural-network model to particular input data when deploying this model for on-device ML applications.
Requirements
- Refer to requirements.txt for dependent libraries that're needed to use the library and run the demo code.
- Note that you might also need to install
sndfile
for Audio tasks. On Debian/Ubuntu, you can do so bysudo apt-get install libsndfile1
Installation
There are two ways to install Model Maker.
- Install a prebuilt pip package:
tflite-model-maker
.
pip install tflite-model-maker
If you want to install nightly version
tflite-model-maker-nightly
,
please follow the command:
pip install tflite-model-maker-nightly
- Clone the source code from GitHub and install.
git clone https://github.com/tensorflow/examples
cd examples/tensorflow_examples/lite/model_maker/pip_package
pip install -e .
TensorFlow Lite Model Maker depends on TensorFlow pip package. For GPU support, please refer to TensorFlow's GPU guide or installation guide.
End-to-End Example
For instance, it could have an end-to-end image classification example that utilizes this library with just 4 lines of code, each of which representing one step of the overall process. For more detail, you could refer to Colab for image classification.
- Step 1. Import the required modules.
from tflite_model_maker import image_classifier
from tflite_model_maker.image_classifier import DataLoader
- Step 2. Load input data specific to an on-device ML app.
data = DataLoader.from_folder('flower_photos/')
- Step 3. Customize the TensorFlow model.
model = image_classifier.create(data)
- Step 4. Evaluate the model.
loss, accuracy = model.evaluate()
- Step 5. Export to Tensorflow Lite model and label file in
export_dir
.
model.export(export_dir='/tmp/')
Notebook
Currently, we support image classification, text classification and question answer tasks. Meanwhile, we provide demo code for each of them in demo folder.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for tflite-model-maker-nightly-0.3.3.dev202107292300.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | dda85b4115051892c6a1f145150feb6fd44d2bc76b32fce73de0201d0de0b1de |
|
MD5 | 7238bea6a83309d0390e34f8d9b759b5 |
|
BLAKE2b-256 | 5447b80d5e02f596dc516870d1e59146a3d6a40e96793defb0487bca7746600d |
Hashes for tflite_model_maker_nightly-0.3.3.dev202107292300-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 10fc7af1cdc83b3db4d6bc7ec0c7c71161f002087865c9971587f6dc2dc0f9da |
|
MD5 | 051af01df82f113ab9e7ccd57cf0ef83 |
|
BLAKE2b-256 | 0183c34475b821020ec0084e311b4739a39039c5b3273d626f6ad86000972df1 |