Skip to main content

A data-driven approach to stellar spectroscopy

Project description

# The Cannon

[![Build Status](https://img.shields.io/travis/andycasey/AnniesLasso/refactor.svg)](https://travis-ci.org/andycasey/AnniesLasso)
[![Coverage Status](https://img.shields.io/coveralls/andycasey/AnniesLasso/refactor.svg)](https://coveralls.io/github/andycasey/AnniesLasso?branch=refactor)
[![Scrutinizer](https://img.shields.io/scrutinizer/g/andycasey/AnniesLasso.svg?b=refactor)](https://scrutinizer-ci.com/g/andycasey/AnniesLasso/?branch=refactor)
[![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/andycasey/AnniesLasso/blob/refactor/LICENSE)


[See the documentation.](#)

## Authors
- **Andy Casey** (Cambridge) (Monash)
- **David W. Hogg** (NYU) (MPIA) (SCDA)
- **Melissa K. Ness** (MPIA)
- **Hans-Walter Rix** (MPIA)
- **Anna Y. Q. Ho** (Caltech)
- **Gerry Gilmore** (Cambridge)


## License
**Copyright 2017 the authors**.
The code in this repository is released under the open-source **MIT License**.
See the file `LICENSE` for more details.


## Installation

To install:

``
pip install https://github.com/andycasey/AnniesLasso/archive/refactor.zip
``


## Getting Started

Let us assume that you have rest-frame continuum-normalized spectra for a set of
stars for which the stellar parameters and chemical abundances (which we will
collectively call *labels*) are known with high fidelity. The labels for those
stars (and the locations of the spectrum fluxes and inverse variances) are
assumed to be stored in a table. In this example all stars are assumed to be
sampled on the same wavelength (dispersion) scale.


Here we will create and train a 3-label (effective temperature, surface gravity,
metallicity) quadratic (e.g., `Teff^2`) model:


````python
import numpy as np
from astropy.table import Table

import AnniesLasso as tc

# Load the table containing the training set labels, and the spectra.
training_set = Table.read("training_set_labels.fits")

# Here we will assume that the flux and inverse variance arrays are stored in
# different ASCII files. The end goal is just to produce flux and inverse
# variance arrays of shape (N_stars, N_pixels).
normalized_flux = np.array([np.loadtxt(star["flux_filename"]) for star in training_set])
normalized_ivar = np.array([np.loadtxt(star["ivar_filename"]) for star in training_set])

# Providing the dispersion to the model is optional, but handy later on.
dispersion = np.loadtxt("common_wavelengths.txt")

# Create the model that will run in parallel using all available cores.
model = tc.CannonModel(training_set, normalized_flux, normalized_ivar,
dispersion=dispersion, threads=-1)

# Specify the complexity of the model:
model.vectorizer = tc.vectorizer.NormalizedPolynomialVectorizer(labelled_set,
tc.vectorizer.polynomial.terminator(("TEFF", "LOGG", "FEH"), 2))

# Train the model!
model.train()
````

You can follow this example further in the complete [Getting Started](#) tutorial.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

the-cannon-0.2.6.tar.gz (25.5 kB view details)

Uploaded Source

File details

Details for the file the-cannon-0.2.6.tar.gz.

File metadata

  • Download URL: the-cannon-0.2.6.tar.gz
  • Upload date:
  • Size: 25.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for the-cannon-0.2.6.tar.gz
Algorithm Hash digest
SHA256 727178f1be58cd3c0781dee23755053faee2a93d71eb3be4f80849ddcfc1f4ef
MD5 fed7ec32dcc5b1d2d5453180c89ea519
BLAKE2b-256 662916938507e570d73c2242e8b46bb1854f00d7704675b73277ee5d3bd753d3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page