Skip to main content

Training framework & tools for PyTorch-based machine learning projects.

Project description

This package provides a training framework and CLI for PyTorch-based machine learning projects. This is free software distributed under the Apache Software License version 2.0 built by researchers and developers from the Centre de Recherche Informatique de Montréal / Computer Research Institute of Montreal (CRIM).

For installation instructions, refer to the installation guide. For usage instructions, refer to the user guide. Information about the auto-generated documentation is available here.

Notes

Development is still on-going — expect the API and the internal classes to change rapidly.

The project’s structure was originally generated by cookiecutter via ionelmc’s template.

Changelog

0.2.1 (2019/01/24)

  • Added typedef module & cleaned up parameter inspections

  • Cleaned up all drawing utils & added callback support to trainers

  • Added support for albumentation pipelines via wrapper

  • Updated all trainers/schedulers to rely on 0-based indexing

  • Updated travis/rtd configs for auto-deploy & 3.6 support

0.2.0 (2019/01/15)

  • Added regression/segmentation tasks and trainers

  • Added interface for pascalvoc dataset

  • Refactored data loaders/parsers and cleaned up data package

  • Added lots of new utilities in base trainer implementation

  • Added new unit tests for transformations

  • Refactored transformations to use wrappers for augments/lists

  • Added new samplers with dataset scaling support

  • Added baseline implementation for FCN32s

  • Added mae/mse metrics implementations

  • Added trainer support for loss computation via external members

  • Added utils to download/verify/extract files

0.1.1 (2019/01/14)

  • Minor fixups and updates for CCFB02 compatibility

  • Added RawPredictions metric to fetch data from trainers

0.1.0 (2018/11/28)

  • Fixed readthedocs sphinx auto-build w/ mocking.

  • Refactored package structure to avoid env issues.

  • Rewrote seeding to allow 100% reproducible sessions.

  • Cleaned up config file parameter lists.

  • Cleaned up session output vars/logs/images.

  • Add support for eval-time augmentation.

  • Update transform wrappers for multi-channels & lists.

  • Add gui module w/ basic segmentation annotation tool.

  • Refactored task interfaces to allow merging.

  • Simplified model fine-tuning via checkpoints.

0.0.2 (2018/10/18)

  • Completed first documentation pass.

  • Fixed travis/rtfd builds.

  • Fixed device mapping/loading issues.

0.0.1 (2018/10/03)

  • Initial release (work in progress).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thelper-0.2.1.tar.gz (143.0 kB view details)

Uploaded Source

File details

Details for the file thelper-0.2.1.tar.gz.

File metadata

  • Download URL: thelper-0.2.1.tar.gz
  • Upload date:
  • Size: 143.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.6.3

File hashes

Hashes for thelper-0.2.1.tar.gz
Algorithm Hash digest
SHA256 3630d424b03fc082a13f1eb5b12e3dfc6f509d5699b009cb227b857894b6d296
MD5 ee8c305d647827325b44608d2a13ea76
BLAKE2b-256 b545b4950410207f3d76405263476a0c12cee7ad5be4d31f3cfd4f0721fd2dd7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page