Skip to main content

Large-scale neural data analysis in Spark

Project description

https://travis-ci.org/freeman-lab/thunder.png

Thunder

Large-scale neural data analysis with Spark - project page

About

Thunder is a library for analyzing large-scale neural data. It’s fast to run, easy to develop for, and can be run interactively. It is built on Spark, a new framework for cluster computing.

Thunder includes utilties for data loading and saving, and modular functions for time series statistics, matrix decompositions, and fitting algorithms. Analyses can easily be scripted or combined. It is written in Spark’s Python API (Pyspark), making use of scipy, numpy, and scikit-learn. Experimental streaming analyses are availiable in Scala, and we plan to port some functionality to Scala in the future for improved performance.

Quick start

Thunder is designed to run on a cluster, but local testing is a great way to learn and develop. Many computers can install it with just a few simple steps. If you aren’t currently using Python for scientific computing, Anaconda is highly recommended.

  1. Download the latest, pre-built version of Spark, and set one environmental variable

export SPARK_HOME=/your/path/to/spark
  1. Install Thunder

pip install thunder-python
  1. Start Thunder from the terminal

thunder
>> from thunder.utils import DataSets
>> from thunder.factorization import ICA
>> data = DataSets.make(sc, "ica")
>> model = ICA(k=2).fit(data)

To run in iPython, just set this environmental variable before staring:

export IPYTHON=1

To run analyses as standalone jobs, use the submit script

thunder-submit timeseries/stats <datadirectory> <outputdirectory> <opts>

We also include a script for launching an Amazon EC2 cluster with Thunder presintalled

>> thunder-ec2 -k mykey -i mykey.pem -s <number-of-nodes> launch <cluster-name>

Analyses

Thunder currently includes five packages: classification, clustering, factorization, regression, and timeseries, as well as an io package for loading and saving (see Input format and Output format), and a util package for utilities (like common matrix operations). Packages include scripts for running standalone analyses, but the underlying classes and functions can be used from within the PySpark shell for easy interactive analysis.

Input and output

Thunder is built around a commmon input format for raw neural data: a set of signals as key-value pairs, where the key is an identifier, and the value is a response time series. In imaging data, for example, each record would be a voxel or an ROI, the key an xyz coordinate, and the value a flouresence time series. This is a useful representation because most analyses parallelize across neural signals (i.e. across records).

These key-value records can, in principle, be stored in a variety of cluster-accessible formats, and it does not affect the core functionality (besides loading). Currently, the loading function assumes a text file input, where the rows are neural signals, and the columns are the keys and values, each number separated by space. Support for flat binary files is coming soon.

All metadata (e.g. parameters of the stimulus or behavior for regression analyses) can be provided as numpy arrays or loaded from MAT files, see relavant functions for more details.

Results can be visualized directly from the python shell ir iPython notebook, or saved as MAT files, text files, or images.

Road map

If you have other ideas or want to contribute, submit an issue or pull request!

  • New file formats for input data

  • Automatic extract-transform-load for more raw formats (e.g. raw images)

  • Analysis-specific visualizations

  • Unified metadata representation

  • Port versions of most common workflows to scala

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thunder-python-0.1.0.tar.gz (156.3 kB view details)

Uploaded Source

File details

Details for the file thunder-python-0.1.0.tar.gz.

File metadata

File hashes

Hashes for thunder-python-0.1.0.tar.gz
Algorithm Hash digest
SHA256 8bc7d05ff747c2ab2f3144ad1b85adaa4917f095dd86af249b74bb7a585a9376
MD5 c11d48f84099a037195b230003d925ef
BLAKE2b-256 07927cd59299f673bd40cfe74291adc456207c867b9bed89e334f6dd46fadceb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page