Skip to main content

Network Topology via TIGER/Line Edges

Project description

GitHub release PyPI version Conda Version Conda Recipe

TigerNet

Network Topology via TIGER/Line Edges

unittests codecov made-with-python Code style: black pre-commit

What is TigerNet and how does it work?

TigerNet is an open-source Python library that addresses concerns in topology and builds accurate spatial network representations from TIGER/Line data, specifically TIGER/Line edges. This is achieved through a 7-step process that roughly is as follows:

  1. creation of initial TIGER/Line edges subset (features with a road-type MTFCC)
  2. creation of initial segments subset (retain only specified road-type MTFCCs)
  3. welding of limited-access segments (limited-access segments — freeways, etc. — that share a non-articulation point are isolated and welded together)
  4. welding of general segments (surface street segments that share a non-articulation point are isolated and welded together)
  5. splitting of general segments (surface street segments that cross at known intersections are split)
  6. cleansing of the segment data (steps 4 and 5 are repeated until the data is deemed "clean" enough for network instantiation)
  7. building of the network (creation of network topology with the option of further simplification to eliminate all remaining non-articulation points — a pseudo graph-theoretic object — while maintaining spatial accuracy)

Important

After some consideration, this repo will serve as a stub for the tigernet implementation developed for Gaboardi (2019), which can be cited in future publications through its DOI. Currently, some of the concepts are already being incorporated into spaghetti, with more of the functionality in the original tigernet potential (such as network measures pysal/spaghetti#126).

Examples

Installation

Pypi python versions Currently tigernet officially supports 3.8 and 3.9.

Install the current release from PyPI by running:

$ pip install tigernet

Install the most current development version of tigernet by running:

$ pip install git+https://github.com/jGaboardi/tigernet

Support

If you are having issues, please create an issue.

License

The project is licensed under the BSD 3-Clause license.

Citations

@misc{tigernet_gaboardi_2019,
  author  = {James David Gaboardi},
  title   = {jGaboardi/tigernet},
  month   = {aug},
  year    = {2019},
  doi     = {10.5281/zenodo.204572461},
  url     = {https://github.com/jGaboardi/tigernet}
}

Related projects

References

  • The original method for tigernet is described in Chapter 1 of Gaboardi (2019).
  • The results of secondary analysis (spatial representions of population) were presented in Gaboardi (2020) and can also be found in Chapter 3 of Gaboardi (2019).
    • James D. Gaboardi (2020, November). Validation of Abstract Population Representations. Presented at the 2019 Atlanta Research Data Center Annual Research Conference at Vanderbilt University (ARDC), Nashville, Tennessee: Zenodo. DOI
  • The WeightedParcels_Leon_FL_2010 dataset is based on that used in Gaboardi (2019), which was produced in Strode et al. (2018).
    • Georgianna Strode, Victor Mesev, and Juliana Maantay (2018). Improving Dasymetric Population Estimates for Land Parcels: Data Pre-processing Steps. Southeastern Geographer 58 (3), 300–316. doi: 10.1353/sgo.2018.0030.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tigernet-0.2.4.tar.gz (66.6 kB view details)

Uploaded Source

Built Distribution

tigernet-0.2.4-py3-none-any.whl (72.5 kB view details)

Uploaded Python 3

File details

Details for the file tigernet-0.2.4.tar.gz.

File metadata

  • Download URL: tigernet-0.2.4.tar.gz
  • Upload date:
  • Size: 66.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for tigernet-0.2.4.tar.gz
Algorithm Hash digest
SHA256 fc08329dd3b7ac3543cba051aed4093ccad6cbb0a59985e9cf70a7183a866fb7
MD5 5b8469fe035a9e600c2f34cc9074c325
BLAKE2b-256 b567f57f5690b5e814488da28e416ad20cb4294897754e49bd47f11694d03773

See more details on using hashes here.

File details

Details for the file tigernet-0.2.4-py3-none-any.whl.

File metadata

  • Download URL: tigernet-0.2.4-py3-none-any.whl
  • Upload date:
  • Size: 72.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for tigernet-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 0dc8f7be8c2459b60853c35c67fc21a8ae4399c3492abbe9ceeb9ba8adb7cda2
MD5 a0ccb855c08a4a39cc5645f583f852bb
BLAKE2b-256 b3c31943201ca99b16713824ff6d77ff61e783de46b01a485c7ab1f2b3def50e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page