Skip to main content

tiktoken is a fast BPE tokeniser for use with OpenAI's models

Project description

⏳ tiktoken

tiktoken is a fast BPE tokeniser for use with OpenAI's models.

import tiktoken
enc = tiktoken.get_encoding("cl100k_base")
assert enc.decode(enc.encode("hello world")) == "hello world"

# To get the tokeniser corresponding to a specific model in the OpenAI API:
enc = tiktoken.encoding_for_model("gpt-4")

The open source version of tiktoken can be installed from PyPI:

pip install tiktoken

The tokeniser API is documented in tiktoken/core.py.

Example code using tiktoken can be found in the OpenAI Cookbook.

Performance

tiktoken is between 3-6x faster than a comparable open source tokeniser:

image

Performance measured on 1GB of text using the GPT-2 tokeniser, using GPT2TokenizerFast from tokenizers==0.13.2, transformers==4.24.0 and tiktoken==0.2.0.

Getting help

Please post questions in the issue tracker.

If you work at OpenAI, make sure to check the internal documentation or feel free to contact @shantanu.

What is BPE anyway?

Models don't see text like you and I, instead they see a sequence of numbers (known as tokens). Byte pair encoding (BPE) is a way of converting text into tokens. It has a couple desirable properties:

  1. It's reversible and lossless, so you can convert tokens back into the original text
  2. It works on arbitrary text, even text that is not in the tokeniser's training data
  3. It compresses the text: the token sequence is shorter than the bytes corresponding to the original text. On average, in practice, each token corresponds to about 4 bytes.
  4. It attempts to let the model see common subwords. For instance, "ing" is a common subword in English, so BPE encodings will often split "encoding" into tokens like "encod" and "ing" (instead of e.g. "enc" and "oding"). Because the model will then see the "ing" token again and again in different contexts, it helps models generalise and better understand grammar.

tiktoken contains an educational submodule that is friendlier if you want to learn more about the details of BPE, including code that helps visualise the BPE procedure:

from tiktoken._educational import *

# Train a BPE tokeniser on a small amount of text
enc = train_simple_encoding()

# Visualise how the GPT-4 encoder encodes text
enc = SimpleBytePairEncoding.from_tiktoken("cl100k_base")
enc.encode("hello world aaaaaaaaaaaa")

Extending tiktoken

You may wish to extend tiktoken to support new encodings. There are two ways to do this.

Create your Encoding object exactly the way you want and simply pass it around.

cl100k_base = tiktoken.get_encoding("cl100k_base")

# In production, load the arguments directly instead of accessing private attributes
# See openai_public.py for examples of arguments for specific encodings
enc = tiktoken.Encoding(
    # If you're changing the set of special tokens, make sure to use a different name
    # It should be clear from the name what behaviour to expect.
    name="cl100k_im",
    pat_str=cl100k_base._pat_str,
    mergeable_ranks=cl100k_base._mergeable_ranks,
    special_tokens={
        **cl100k_base._special_tokens,
        "<|im_start|>": 100264,
        "<|im_end|>": 100265,
    }
)

Use the tiktoken_ext plugin mechanism to register your Encoding objects with tiktoken.

This is only useful if you need tiktoken.get_encoding to find your encoding, otherwise prefer option 1.

To do this, you'll need to create a namespace package under tiktoken_ext.

Layout your project like this, making sure to omit the tiktoken_ext/__init__.py file:

my_tiktoken_extension
├── tiktoken_ext
│   └── my_encodings.py
└── setup.py

my_encodings.py should be a module that contains a variable named ENCODING_CONSTRUCTORS. This is a dictionary from an encoding name to a function that takes no arguments and returns arguments that can be passed to tiktoken.Encoding to construct that encoding. For an example, see tiktoken_ext/openai_public.py. For precise details, see tiktoken/registry.py.

Your setup.py should look something like this:

from setuptools import setup, find_namespace_packages

setup(
    name="my_tiktoken_extension",
    packages=find_namespace_packages(include=['tiktoken_ext*']),
    install_requires=["tiktoken"],
    ...
)

Then simply pip install ./my_tiktoken_extension and you should be able to use your custom encodings! Make sure not to use an editable install.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tiktoken-0.5.0.tar.gz (32.2 kB view details)

Uploaded Source

Built Distributions

tiktoken-0.5.0-cp311-cp311-win_amd64.whl (760.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

tiktoken-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

tiktoken-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

tiktoken-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.0-cp311-cp311-macosx_11_0_arm64.whl (924.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tiktoken-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl (954.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

tiktoken-0.5.0-cp310-cp310-win_amd64.whl (760.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

tiktoken-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

tiktoken-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

tiktoken-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.0-cp310-cp310-macosx_11_0_arm64.whl (924.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tiktoken-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl (954.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tiktoken-0.5.0-cp39-cp39-win_amd64.whl (760.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

tiktoken-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

tiktoken-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

tiktoken-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.0-cp39-cp39-macosx_11_0_arm64.whl (925.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tiktoken-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl (955.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tiktoken-0.5.0-cp38-cp38-win_amd64.whl (760.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

tiktoken-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

tiktoken-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

tiktoken-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.0-cp38-cp38-macosx_11_0_arm64.whl (925.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tiktoken-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl (955.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file tiktoken-0.5.0.tar.gz.

File metadata

  • Download URL: tiktoken-0.5.0.tar.gz
  • Upload date:
  • Size: 32.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tiktoken-0.5.0.tar.gz
Algorithm Hash digest
SHA256 c8dfd3280f5fca0d8ed2ec18c0f11f7cba305af48faaf4b914c71b7d221f39ed
MD5 ca58e9027fdb0906b9d0c91a9ac8344c
BLAKE2b-256 a7924a48603fc2ad535a50fbf4471fb5014ce6e13b3acd0959ce4384ccb58262

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 760.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tiktoken-0.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 caaf5db8705d7d39286361a2ef71315ff1673b8787fe64f457c63770ceda1f6b
MD5 048f0cd22b46ec241994d05dc20a5199
BLAKE2b-256 90b001fd5ff891a15866103df2e568824fe9f1ed44403534b376e18d52d169a3

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f823a3034abc838e53a42271c6a15369ccbf467abbba517ee3595d6741dab107
MD5 6b9b08eee2205d63fb05ee71de000015
BLAKE2b-256 e6a014542bd1381af772b50512479e5aa1f7e4adc14451f8059cf5b9dff473ab

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2fbb444c0183701a2f012a720b040b6116b0e061c7ea70a3a8828b850fb2c71a
MD5 e02705c62b9f1d8abaa4864d1ee71a64
BLAKE2b-256 88fe2de3427941bd7594910613ac6b84a67c6c0327cdb24b5c8256df54d81e9f

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74280005ad0c6aceb53b12aad84d9b3753b72da6603d57bbc35212631e6a3bb1
MD5 9fa313373ecdb1d51bf6fdd20d74579d
BLAKE2b-256 db6f25fd180d86ccb00a548dcd07a299fbd5d6dce918246b07a17d2b13189358

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 11ce4800f5708cf43997fbcec9cd69939462b8c5856715aae6ddb244a5d71eed
MD5 6fdcb004807f16d6da132ed062d644ca
BLAKE2b-256 60d884c76ef1f23793a2526d94c9f72ff5c4cc53708cee82872eb85ee4e482d5

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 89e2fdba5ab5a13a2f174e76897d6135caf31b0aa9fa97c8df63eaa8acfea46a
MD5 a2e7d2cea91fa4015bc41e448b05b0d0
BLAKE2b-256 5d525cd78e67d4de77c519a595a7e57de7e56c9466c7e3fa1d65c6abab0f1b41

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8e2ac182d9c975c7c5068382bb17f56e468c35007ea075e37f4bebe85c95f9fc
MD5 8992e04aed35853afb48db8fe37d4e25
BLAKE2b-256 e5da9cbee28719ebeb989b1f9796d8da00509a7bc43e8ed7b0efa7071916cb54

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 760.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tiktoken-0.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e31972f9594a34e2546b69b87e921e035b2f52b12559c9cd5231f796c6473ffc
MD5 57a6e3e74a218773e622eb003d6fcfae
BLAKE2b-256 d7818466980aebb6fe7330ca86d6214c7310b1a26b61464ce47f38a9a977cdde

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5939137cc4d2b3628a00254ad22b1d520a945a100d8bf760bc0e2963ebd6d173
MD5 f26ce9d7d801277a9a64bd5906b142a4
BLAKE2b-256 31d22ab565331bbdd09b58a6dcc103cabb7e2af2b14b21b105ebea31d658bbeb

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f16e1bb26a36841bb58b857ed3bbe1e6be845829e5dbb28cea80e2e622ebd753
MD5 e72c4b89d0901299f177811ab37086cf
BLAKE2b-256 1d3a7009f6ee740fae9b3503e1aa2a4b553b9aa6c21fee0696df07c0252e8302

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf10dff18a1b6b009aa89f0850a8024b393696045a65e82d10e55d7ae5c8b5bd
MD5 f65a7564f9cf109d880c7bfb46b5d28b
BLAKE2b-256 4648b71882824c27c9f53c126ca80457c7ac963d9d1af8ad022c10a9a593a50b

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3578d1d49757d9a2770d1aa36915a342804da1a419c7db218d3565309599e378
MD5 a9ddb31efb776d264d52cb37bd883b7c
BLAKE2b-256 318c059301fe4c21fadf3c41e08b60c20ec22997a4be8c48afd29c13e16b36eb

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7c96a1234e0edd4a7dd616c5da2658268a55c0931e72d319a998807feba8aa77
MD5 cd26ccefd1e6c9f4240fa8d999799077
BLAKE2b-256 b27aca067ed0d2e2aa62bb56ec693572d26689b3b81c16bc8cd331e963e59f91

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6eaf6b593f09e321446e0940d5bc72960687b2d1889c0431d42718d437bb3285
MD5 b214c08b846ec70af513568a3f31c1f8
BLAKE2b-256 8efc21f0b8baf8cafb19c3c7ca0c11d5cd1c0498e1c1c2fcb3a079a5b2c47c87

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 760.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tiktoken-0.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 02c35c78849ead31b69fd42b021031554fd1f3813fd1bf064185f6404768eea6
MD5 1f2c583f5c9eec3a1acb27663a9b386e
BLAKE2b-256 0972df4ec91796743a9658e9e543090c5c26ffd34556e249b16a9ab2fec25bad

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2a9324122f8e33475b575f7bfff035c15a789dc50edeca907ecaa9c8d72cc168
MD5 396627dbc5058ddd8c11b040e7c10483
BLAKE2b-256 d65afa81e661aa4a1851cce6e60e3632a796de692aeeaf231d8b677d3026f0d8

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8d45410f89b7efb26b53eb8993f1122e0442abe0bb913ccb0f5d28be7e36e2a9
MD5 7c88ffa6125e0e58e5a4b90a1efef529
BLAKE2b-256 4e266544e633fae6d6075396e4c1f610b7ca3b7253456970d3aaab4b5b74b3dd

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bbf1af57d68340447ca1827a93ae0a788f97787b3a17851709156636df47d815
MD5 09c3e405dd9a56ac1452acafe47eba4f
BLAKE2b-256 e6fa47401e64c77c562e4ebb2438c5578b8192428604ec977fe7fe9af591c475

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dbb94200722590d2cae477967f0470f17846e5cada4fc1e4754ec8701cdd6494
MD5 17df1ae5717cbddc1f920adbb01853f7
BLAKE2b-256 0ae8bb6650618953b4f023fc6bfab2ee254de90a82d5cf78460bbca91806b4d7

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dda8f19ce057d7aa5f8015ffea3beacc20661a42afbc81f7a599534716214a8e
MD5 a3b24cbf238041108886d4d15f9458cf
BLAKE2b-256 d5ce7fba7023ca43695ee02bc22c65cccb7967c88635379d7b418d984137dd73

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9635a6a5aadeb116c950b285d97987199cada3e28531a84f32b38941dead759f
MD5 3740af4c7232a528f2b110ca6927eb73
BLAKE2b-256 10e38c2f4f01fb7cf3240f6cc0ff2ca907e551225db6e0f690aeda038a1272f1

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 760.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tiktoken-0.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0f994aefe5f2c69dc6ee822c5323c5bef2cb4c84533af813c4b867419701cc2d
MD5 b988645b8565437442cdc98dd58825c8
BLAKE2b-256 79b1b3ff24781b9a7328e9c890690e6a8748caf8526dd151a2435d773966e7f4

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2f1c85626ed1bf68104715893dad9dce8153cab44cfeeeab5c56bb5ec92b813c
MD5 5e4112cf26ad92de6a4ff48757f99e61
BLAKE2b-256 33d9ac0a9b7c0d5784df0ca80bd9b7e28ebe1383df41f55eb76d5dd02a274f5f

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f84d9bc41da27961516b8e56254ad886e16ac64a3f5b5fb7c4335678e23579b0
MD5 ef3915f2039f46e9171b74fcfc7434e0
BLAKE2b-256 61d63fd46538185f9461877346220cbec3a4ed7c3c4180e0a1819f570071dbe8

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd88e25af7463d5b15812262f66d6f3096a6e4b60e0c0712b917a51175f57f0d
MD5 98b7392751f8b459d0385987d259bebc
BLAKE2b-256 7b6fb0a6d0c084802bcfc739c0c97e376df6c1c0761fa98d01cfeac0243d0ec4

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2c5a3a1aa7bc2490c2e64f7a1d14159e03b1c252ed253e0ca712c1952d51ca2f
MD5 b6690be335c44d43b3e51bfe4f2d4304
BLAKE2b-256 0ea0815ee30d1fdddc8b2bd69d9633a47aaaf443d45859d489c82e20b03cbff8

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3aab8676862ccc923867864f5339fdb1a5322fc21f9f06bbba0ae7a845d7fe5a
MD5 2223ea07183647c14125f018bd9e2716
BLAKE2b-256 b4bb1951e4dbd6f0005b9de920586af28def8bac7f40773bdd48ab784f2dc2c6

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 89bc1d136ab6abfcc0aab0ab52b5641ca45c23bd63f65da957c2d13122e5ae3c
MD5 530a1699426fee0d86c828065aa808bc
BLAKE2b-256 ded9822911fe2d0143b657d8cd1d45ce13e8045f7380604e6cd4416650f38b6c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page