Skip to main content

tiktoken is a fast BPE tokeniser for use with OpenAI's models

Project description

⏳ tiktoken

tiktoken is a fast BPE tokeniser for use with OpenAI's models.

import tiktoken
enc = tiktoken.get_encoding("cl100k_base")
assert enc.decode(enc.encode("hello world")) == "hello world"

# To get the tokeniser corresponding to a specific model in the OpenAI API:
enc = tiktoken.encoding_for_model("gpt-4")

The open source version of tiktoken can be installed from PyPI:

pip install tiktoken

The tokeniser API is documented in tiktoken/core.py.

Example code using tiktoken can be found in the OpenAI Cookbook.

Performance

tiktoken is between 3-6x faster than a comparable open source tokeniser:

image

Performance measured on 1GB of text using the GPT-2 tokeniser, using GPT2TokenizerFast from tokenizers==0.13.2, transformers==4.24.0 and tiktoken==0.2.0.

Getting help

Please post questions in the issue tracker.

If you work at OpenAI, make sure to check the internal documentation or feel free to contact @shantanu.

What is BPE anyway?

Models don't see text like you and I, instead they see a sequence of numbers (known as tokens). Byte pair encoding (BPE) is a way of converting text into tokens. It has a couple desirable properties:

  1. It's reversible and lossless, so you can convert tokens back into the original text
  2. It works on arbitrary text, even text that is not in the tokeniser's training data
  3. It compresses the text: the token sequence is shorter than the bytes corresponding to the original text. On average, in practice, each token corresponds to about 4 bytes.
  4. It attempts to let the model see common subwords. For instance, "ing" is a common subword in English, so BPE encodings will often split "encoding" into tokens like "encod" and "ing" (instead of e.g. "enc" and "oding"). Because the model will then see the "ing" token again and again in different contexts, it helps models generalise and better understand grammar.

tiktoken contains an educational submodule that is friendlier if you want to learn more about the details of BPE, including code that helps visualise the BPE procedure:

from tiktoken._educational import *

# Train a BPE tokeniser on a small amount of text
enc = train_simple_encoding()

# Visualise how the GPT-4 encoder encodes text
enc = SimpleBytePairEncoding.from_tiktoken("cl100k_base")
enc.encode("hello world aaaaaaaaaaaa")

Extending tiktoken

You may wish to extend tiktoken to support new encodings. There are two ways to do this.

Create your Encoding object exactly the way you want and simply pass it around.

cl100k_base = tiktoken.get_encoding("cl100k_base")

# In production, load the arguments directly instead of accessing private attributes
# See openai_public.py for examples of arguments for specific encodings
enc = tiktoken.Encoding(
    # If you're changing the set of special tokens, make sure to use a different name
    # It should be clear from the name what behaviour to expect.
    name="cl100k_im",
    pat_str=cl100k_base._pat_str,
    mergeable_ranks=cl100k_base._mergeable_ranks,
    special_tokens={
        **cl100k_base._special_tokens,
        "<|im_start|>": 100264,
        "<|im_end|>": 100265,
    }
)

Use the tiktoken_ext plugin mechanism to register your Encoding objects with tiktoken.

This is only useful if you need tiktoken.get_encoding to find your encoding, otherwise prefer option 1.

To do this, you'll need to create a namespace package under tiktoken_ext.

Layout your project like this, making sure to omit the tiktoken_ext/__init__.py file:

my_tiktoken_extension
├── tiktoken_ext
│   └── my_encodings.py
└── setup.py

my_encodings.py should be a module that contains a variable named ENCODING_CONSTRUCTORS. This is a dictionary from an encoding name to a function that takes no arguments and returns arguments that can be passed to tiktoken.Encoding to construct that encoding. For an example, see tiktoken_ext/openai_public.py. For precise details, see tiktoken/registry.py.

Your setup.py should look something like this:

from setuptools import setup, find_namespace_packages

setup(
    name="my_tiktoken_extension",
    packages=find_namespace_packages(include=['tiktoken_ext*']),
    install_requires=["tiktoken"],
    ...
)

Then simply pip install ./my_tiktoken_extension and you should be able to use your custom encodings! Make sure not to use an editable install.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tiktoken-0.5.1.tar.gz (32.2 kB view details)

Uploaded Source

Built Distributions

tiktoken-0.5.1-cp311-cp311-win_amd64.whl (759.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

tiktoken-0.5.1-cp311-cp311-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

tiktoken-0.5.1-cp311-cp311-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

tiktoken-0.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.1-cp311-cp311-macosx_11_0_arm64.whl (924.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tiktoken-0.5.1-cp311-cp311-macosx_10_9_x86_64.whl (953.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

tiktoken-0.5.1-cp310-cp310-win_amd64.whl (759.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

tiktoken-0.5.1-cp310-cp310-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

tiktoken-0.5.1-cp310-cp310-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

tiktoken-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.1-cp310-cp310-macosx_11_0_arm64.whl (924.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tiktoken-0.5.1-cp310-cp310-macosx_10_9_x86_64.whl (953.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tiktoken-0.5.1-cp39-cp39-win_amd64.whl (760.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

tiktoken-0.5.1-cp39-cp39-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

tiktoken-0.5.1-cp39-cp39-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

tiktoken-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.1-cp39-cp39-macosx_11_0_arm64.whl (925.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tiktoken-0.5.1-cp39-cp39-macosx_10_9_x86_64.whl (953.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tiktoken-0.5.1-cp38-cp38-win_amd64.whl (759.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

tiktoken-0.5.1-cp38-cp38-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

tiktoken-0.5.1-cp38-cp38-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

tiktoken-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.1-cp38-cp38-macosx_11_0_arm64.whl (924.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tiktoken-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl (953.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file tiktoken-0.5.1.tar.gz.

File metadata

  • Download URL: tiktoken-0.5.1.tar.gz
  • Upload date:
  • Size: 32.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tiktoken-0.5.1.tar.gz
Algorithm Hash digest
SHA256 27e773564232004f4f810fd1f85236673ec3a56ed7f1206fc9ed8670ebedb97a
MD5 3ce8a0749de9688e3a4c0c3088423055
BLAKE2b-256 bdef91777d3310589c55da4bf0fafa10fdc8ddefa30aa7dfa67b2fc8825bc1f1

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 759.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tiktoken-0.5.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1fe99953b63aabc0c9536fbc91c3c9000d78e4755edc28cc2e10825372046a2d
MD5 8187274baa86a5c4fdd9761e38531335
BLAKE2b-256 b8eb234646d9eefda8a500d0fd88b05bf625a90ed18054124349db26e558276e

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5abd9436f02e2c8eda5cce2ff8015ce91f33e782a7423de2a1859f772928f714
MD5 47db5b99b708eb2def18c1efc79cc5c9
BLAKE2b-256 851ad6d31aee07475075bcfbb9945e979381474a234fd3ba32cdfa29573f0b64

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 323cec0031358bc09aa965c2c5c1f9f59baf76e5b17e62dcc06d1bb9bc3a3c7c
MD5 3bc2b5bd1432f2059f2be3fec6de4b4b
BLAKE2b-256 a9fc3a43334ab8745b00f4f84a96a8d0762b73d6166cfcd15e287235d52c9d32

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 426e7def5f3f23645dada816be119fa61e587dfb4755de250e136b47a045c365
MD5 43ab179138b55f26a3410c46190c37ec
BLAKE2b-256 942f0cc8fb3436d421d8fa2da370aca0283201f1b99e88a0f6e742bd8eef397d

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ef730db4097f5b13df8d960f7fdda2744fe21d203ea2bb80c120bb58661b155
MD5 f34e5e942f70b8310cb27ec0f93a7e53
BLAKE2b-256 426b3f32283d2882274b8218581076abf1fe058209e247eccf140b9b22dcec59

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8079ac065572fe0e7c696dbd63e1fdc12ce4cdca9933935d038689d4732451df
MD5 84f910fa1b0c25fba1a0ef1c42a851e5
BLAKE2b-256 fb2a3d02ef030f387c373acbeca6d5a2307405a1da735285ec12a9ed0b6302ea

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a10488d1d1a5f9c9d2b2052fdb4cf807bba545818cb1ef724a7f5d44d9f7c3d4
MD5 a02d16c04d863630dd24bc691bbf4c5b
BLAKE2b-256 1502f0d7c68ed90594d90891ee13b87d621ffc3434cccbc461d1f72086ebf0e1

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 759.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tiktoken-0.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 714efb2f4a082635d9f5afe0bf7e62989b72b65ac52f004eb7ac939f506c03a4
MD5 f27f6f8562ce027a32c3a5129bcc696d
BLAKE2b-256 7f9286ca65b96c80b5f678abc5f76fe167446e9bdf309206a1c4269be4bcaf31

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 92ed3bbf71a175a6a4e5fbfcdb2c422bdd72d9b20407e00f435cf22a68b4ea9b
MD5 01e1c7de2d00e9e0b273944b8af71aa7
BLAKE2b-256 d4435e8d2c2bb8baa8aa0c0d9b47a3124542235b75e3d43807edec13b0096379

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 46b8554b9f351561b1989157c6bb54462056f3d44e43aa4e671367c5d62535fc
MD5 f0f0a24edf2ceb20ce8060462c11bdf3
BLAKE2b-256 5e9fe4ee4ceae4deea038a24de3075e9332f64e2e8f82c14c740e6e84b7492ea

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4c73d47bdc1a3f1f66ffa019af0386c48effdc6e8797e5e76875f6388ff72e9
MD5 6e1b19d427993b33570dafb3c81a4adb
BLAKE2b-256 f42e0adf6e264b996e263b1c57cad6560ffd5492a69beb9fd779ed0463d486bc

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 edd2ffbb789712d83fee19ab009949f998a35c51ad9f9beb39109357416344ff
MD5 46f276168120daa76bb5e23afe6ecbb8
BLAKE2b-256 2992a37721dafbd074dbb6518a9e1325038e986f280eca028e61fc3cf4c25778

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e529578d017045e2f0ed12d2e00e7e99f780f477234da4aae799ec4afca89f37
MD5 90aa63c5b74f351cc55b767326ef952b
BLAKE2b-256 cc71ae3daba541bff7e6204ffce3ef189f6007e52ced3fa09634d09b9ba3e7b8

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2b0bae3fd56de1c0a5874fb6577667a3c75bf231a6cef599338820210c16e40a
MD5 655283bdc906fbb32953a7329c5022e9
BLAKE2b-256 0bc9cd8a2e95078f94a40bf1408c0ac353570114976fda90fc8da62d3c85fff6

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 760.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tiktoken-0.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e21840043dbe2e280e99ad41951c00eff8ee3b63daf57cd4c1508a3fd8583ea2
MD5 2115cac418f16f061f2529306f0fcb9e
BLAKE2b-256 91cf7f3b821152f7abb240950133c60c394f7421a5791b020cedb190ff7a61b4

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5d5a187ff9c786fae6aadd49f47f019ff19e99071dc5b0fe91bfecc94d37c686
MD5 485ad3422cca99f47454fd418e6ff161
BLAKE2b-256 01aa2a90bae346c59c51fafda59b18ee3764c50d81c3a23a3b1dc51af344de3d

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 709a5220891f2b56caad8327fab86281787704931ed484d9548f65598dea9ce4
MD5 c4c416e1685793c16f164260a1e7769d
BLAKE2b-256 18fd233dbc21cdfa746fbe32175caef0768e87c8b82b083bbd07513ec86652c6

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74c90d2be0b4c1a2b3f7dde95cd976757817d4df080d6af0ee8d461568c2e2ad
MD5 afe857738a43bf75f9e736cc3754da9b
BLAKE2b-256 4276630aea5ce13dae459afaa474739a5a3d677635119acdc14b9b10b26bf590

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba9873c253ca1f670e662192a0afcb72b41e0ba3e730f16c665099e12f4dac2d
MD5 864bf26166eb2a26076dcb6e8282b68b
BLAKE2b-256 a5d3a387388f3d7dfe1372ca330483c858c884bd3d224114aa8c3a8195b2222d

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2b756a65d98b7cf760617a6b68762a23ab8b6ef79922be5afdb00f5e8a9f4e76
MD5 be5438cfbf79892f96fbb09741c0aa1a
BLAKE2b-256 8e5db87a5cf06c6b49d2859d05a6428a759f25f884f2dbdec2dbb3d4d249a8a6

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b180a22db0bbcc447f691ffc3cf7a580e9e0587d87379e35e58b826ebf5bc7b
MD5 e712d7e050f713df418ccac768e5ab7c
BLAKE2b-256 cbd5215ead6df008e0642bb5c02cd81bf0c9f4243a470c198ba7c033b9bf5635

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 759.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tiktoken-0.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b5dcfcf9bfb798e86fbce76d40a1d5d9e3f92131aecfa3d1e5c9ea1a20f1ef1a
MD5 1aeaf32d781eaa020e0134c7ba44f796
BLAKE2b-256 16af3dfa09ac7486dc9fb23eb5b57425bba6049583a66b319f68e4a3abf80498

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 779c4dea5edd1d3178734d144d32231e0b814976bec1ec09636d1003ffe4725f
MD5 3716e7e7889d295b745a55343b1cf991
BLAKE2b-256 c35adba0841f9e6e62378e52c5a39bf6f6c9882cba0af5fef3eb7a13ae0e9af0

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c008375c0f3d97c36e81725308699116cd5804fdac0f9b7afc732056329d2790
MD5 1864eeb740e642a7a9ed76b8561545a7
BLAKE2b-256 15c04521d066ad86f2baf4c078611a6098aa548495522dd5dc21ccf512fe9be4

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a84657c083d458593c0235926b5c993eec0b586a2508d6a2020556e5347c2f0d
MD5 4e00a673980a4fe44add85584cd6e89c
BLAKE2b-256 651f997b74eb7a161a380e079f147855f1ee37e4751073362bb60b3868d9fcbd

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 43ce0199f315776dec3ea7bf86f35df86d24b6fcde1babd3e53c38f17352442f
MD5 0b0a4e2546afd97bc871b59f9fa62730
BLAKE2b-256 d3679e20ea497552ed839d6702fbb81fbaf16a73b1ae48d199c7b57d2c1ab413

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1f2b3b253e22322b7f53a111e1f6d7ecfa199b4f08f3efdeb0480f4033b5cdc6
MD5 90d9862c3bb54b626358e977c0f178cb
BLAKE2b-256 57410f41f5925bba8dc65f3cfe83838459d59a9f35cf20e6889891f6f6ffc15b

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dcdc630461927718b317e6f8be7707bd0fc768cee1fdc78ddaa1e93f4dc6b2b1
MD5 aa6208ea4d98cf9ea203a599ac7839dd
BLAKE2b-256 bf5ad2491f94558be17493c4fb3606265a67959a2d9ecf271fd45e45727c6773

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page